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for the absence of residual stresses in the hetero- 
structure in the case of coherent growth has been 
obtained analytically. This condition is that the sum 
of the following mismatches is equal to zero: the 
mismatch caused by the difference between the 
coefficients of thermal expansion of layers and the 
lattice mismatch at epitaxy temperature. 

The growth conditions can be satisfied with such 
a radius of curvature of the substrate at epitaxy tem- 
perature at which, on heterostructure straightening 
and cooling, the stresses caused by both the difference 
between the coefficients of expansion of layers and 
the difference between the lattice constants at epitaxy 
temperature are eliminated. In this case, the necessary 
density of dislocations is introduced. 

The method of calculation has been used in 
analyzing the residual stresses of a 14 layer 
InGaAsP/InP coherently developed heterolaser with 
a superlattice. The moments were determined relative 
to the neutral plane and the middle part of each layer. 
It is shown that in the case of moments obtained in 
different ways, their total values only differ in the 

ninth sign and the values of stresses in the layers 
differ in the fourth sign. The validity of the results of 
calculating stresses in which the moment values are 
determined relative to the middle part of each layer 
has been confirmed. 

Concluding remarks 

The condition for the absence of residual stresses in 
superlattices has been obtained analytically for the 
cases of both coherent growth and misfit dislocations. 
In the case of pseudomorphous growth, this condition 
is that the sum of three mismatches is equal to zero: 
the lattice mismatch at epitaxy temperature, the mis- 
match caused by the difference between the 
coefficients of thermal expansion of the layers and 
the mismatch introduced by the misfit dislocations. 
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Abstract 

The mathematical techniques used in the derivation 
of intensity statistics and of probabilistic relations 
between structure factors for single-crystal data are 
here extended so as to encompass the phenomenon 
of intensity overlap, which is encountered with 
diffraction data collected from microcrystalline pow- 
ders or from other disordered specimens. It is shown 
that the loss of information caused by intensity over- 
lap in powder diagrams may be put on the same 
footing as the usual loss of phase for single-crystal 
data by a judicious use of a multiplicity-weighted 
metric and of the n-dimensional spherical geometry 
associated with that metric. Structure determination 
from powder diffraction data is thus cast in the form 
of a 'hyperphase problem' in which the dimension- 
ality varies from one data item to another. This 
geometric picture enables probability distributions 

for overlapped intensities to be derived not only under 
the standard assumption of a uniform distribution of 
random atoms - thus extending Wilson's statistics to 
powder data - but also for non-uniform distributions 
such as those occurring in maximum-entropy phase 
determination [Bricogne (1984). Acta Cryst. A40, 
410-445]. The corresponding conditional probability 
distributions and likelihood functions are then 
derived. The possible presence of known fragments 
is also considered. These new distributions and likeli- 
hood functions lead to new methods of data normaliz- 
ation, to new statistical tests for space-group assign- 
ment, to a generalization of the 'heavy-atom' method, 
to the extension to powders of a new multisolution 
method of structure determination [Bricogne & 
Gilmore (1990). Acta Cryst. A46, 284-297] recently 
applied to single crystals [Gilmore, Bricogne & 
Bannister (1990). Acta Cryst. A46, 297-308] and to a 
new criterion for conducting crystal structure 
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refinement against powder data. It is shown that these 
results are also applicable to other types of diffraction 
data corrupted by overlap, in particular to single- 
crystal data recorded by the Laue technique or on 
twinned crystals and to diffraction patterns from 
fibres with helical symmetry. An extensive mathemati- 
cal Appendix collects the derivations and general 
results used in the paper, together with related 
material which will be used in subsequent develop- 
ments. A companion paper [Gilmore, Henderson & 
Bricogne (1991). Acta Cryst. A47, 830-841] describes 
a first implementation of these results and their 
successful application to the ab initio determination 
of two medium-size structures from powder data. 

O. Introduction 

The determination of crystal structures from X-ray 
powder diffraction data entails not only solving the 
phase problem - as with single crystals - but also 
resolving the integrated intensity corresponding to 
each peak of the powder diagram into the individual 
intensities of the distinct Bragg reflexions contribut- 
ing to that peak. Traditional direct methods are ill 
suited to this purpose because the three-dimensional 
indexing of the data on which the very structure of 
their formulae and procedures is predicated is spoilt 
by the overlap phenomenon. A number of successful 
structure determinations by conventional direct 
methods from powder data have been reported but 
they have been limited to cases where the small size 
or low symmetry of the structure or sheer instrumental 
prowess have resulted in a minimal proportion of 
overlaps. 

The multisolution method based on the combined 
use of entropy and likelihood proposed by Bricogne 
(1984a) and developed for single-crystal data by 
Bricogne & Gilmore (1990) and Gilmore, Bricogne 
& Bannister (1990) does not suffer from this limita- 
tion. Indeed, the construction of joint probability 
distributions (j.p.d.'s for short) of structure factors 
(based on maximum-entropy distributions of atoms) 
on the one hand and the consultation of the experi- 
mental data through likelihood functions on the other 
hand are distinct operations. As a result, the latter can 
be adapted to consulting powder data without 
disturbing the progressive build-up of a three- 
dimensional picture by the former. It is therefore 
possible, in principle, to modify the single-crystal 
approach - and any computer program implementing 
it - so as to solve crystal structures from their powder 
patterns even when most or all of the integrated 
intensities are overlaps. 

It is the purpose of this paper to present the mathe- 
matical methods and results which make this adapta- 
tion possible. The phenomenon of intensity overlap 
is examined in § 1. It is cast into a geometric form 
which makes the separation of overlapping intensities 

and the solution of the phase problem appear as two 
aspects of the same generalized 'hyperphase prob- 
lem'. It is also shown that a felicitous cancellation 
between the effects of statistical weight, reflexion 
multiplicity and centric character leads to an 'equal- 
variance' property which greatly simplifies the associ- 
ated statistical models. The derivation of probability 
distributions of overlapped intensities is then under- 
taken: first under the standard assumption of uni- 
formly distributed atoms (§2), leading to an 
extension of intensity statistics to powder data; then 
in the case of non-uniformly distributed atoms and /o r  
of the presence of known fragments (§ 3) which is 
fundamental to most of the subsequent applications. 
Probability distributions of structure factors condi- 
tioned by the knowledge of an overlapped intensity 
are considered in § 4 and expressions are given for 
their centroids. These mathematical results provide 
the necessary basis for an extension to powders of 
the main stages of a direct structure determination. 
Data preparation and normalization, as well as the 
detection of heavy atoms or known fragments in the 
absence of phase information, are considered in §5. 
Phase determination by the multisolution method 
mentioned above is treated in § 6. Structure comple- 
tion by fragment recycling and structure refinement 
by the Rietveld method are examined in § 7. A first 
implementation of these results and its successful 
application to the ab initio determination of two 
medium-size structures from powder data are repor- 
ted in the following paper (Gilmore, Henderson & 
Bricogne, 1991). Directions of further development 
and other possible applications of this approach - 
which include the Laue method and fibre diffraction 
- are discussed in § 8. 

The work presented here draws on a great variety 
of mathematical techniques and results, mostly from 
n-dimensional spherical geometry and from the 
theories of Eulerian integrals and generalized hyper- 
geometric series. These are found scattered in vast 
and heterogeneous mathematical literature where the 
diversity of contexts obscures their close interrela- 
tions. Direct reference in the text to this primary 
literature would have demanded a great deal of 
browsing and assimilation on the part of the reader. 
To ease this burden, the body of results used in this 
paper has been collected into a mathematical Appen- 
dix, together with extensive cross references between 
them and some new derivations which highlight their 
internal coherence; references to the primary 
literature are then made from within the Appendix. 
As it happens, the hyperphase problem considered 
here provides a framework within which many con- 
nections between the main techniques are displayed 
and exploited in a natural way and lead to very 
effective methods. It is hoped that the compilation of 
such an Appendix will enhance the usefulness of this 
analytical tool to future workers in the field. 
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I. The phenomenon of intensity overlap 

1.0. Preliminary remarks 

Each item of intensity data recorded from a single 
crystal by one of the standard techniques using 
monochromatic X-rays can be labelled by a unique 
point h of the reciprocal lattice and 

lObS = A~, + B 2 for an acentric reflexion (1.1 a) h 

l o b s =  C 2 for a centric reflexion (1 lb) h 

where Ah and Bh are the real and imaginary parts of 
a complex-valued acentric structure factor and Ch is 
the real coordinate of a centric structure factor 
measured along the direction Oh of one of its two 
allowed phases (A2.19). 

On the other hand, each item of integrated intensity 
recorded from a powder specimen with monochro- 
matic X-rays will in general be a sum of contributions 
from several single-crystal reflexions with identical 
(or instrumentally unresolvable) values of d*. Given 
such an intensity data item I,, let H, be the collection 
of symmetry-unique single-crystal reflexions con- 
tributing to that integrated intensity. More 
specifically, let H~ and H i  be the (complementary) 
subsets of H~ consisting of acentric and centric 
reflexions respectively. Then the value of I, is related 
to the structure factors of reflexions in H., by the 
basic equations 

I °bs= f. ph[A2+B2]+ • pkC~. (1.2) 
hEHa,, k e " ~  

Here p. is the multiplicity factor for reflexion h 
[Azfiroff & Buerger (1958), p. 201; Bacon (1962), 
p. 96; Warren (1969), p. 47; Wilson (1970), pp. 75-76], 
which is tabulated in Vol. II of International Tables 
for X-ray Crystallography (1967) (pp. 31-34). 

and 

n = ~ nj. (1.3c) 
j = l  

Equation (1.2) then states that 1 °bs is the square of 
the distance to the origin of a representative point in 
the space I~" when the latter is endowed with an 
anisotropic metric. The tensor of this metric with 
respect to the standard basis of R" is represented by 
an n x n diagonal matrix T in which the multiplicity 
factor pj of each reflexion j is repeated nj times: 

T = diag (pl,  Pl, P2, P2, • • - ,  P-,~, P,,,o, 

Pma+l ,Pma+2 , ' ' "  ,Pro)" ( 1 . 4 )  

Alternatively, we may form a vector F of structure- 
factor components in R" in which the nj components 
from each contributing reflexion j are weighted by 
the square root of the multiplicity factor pj, according 
t o  

F =  

p li/2A , 

p ll/ 2 B 1 

p l / 2 A 2  

p l / 2 B 2  

pl/2 A me, me, 

pl/2 
m a Bma 

pl/2 
m a + l C m a + l  

pl/2 ,,-, 
m a + 2 L ' m a + 2  

p l / 2  ,,-~ 

m I'.~m 

( 1 . 5 )  

1.1. Geometric representation of intensity overlap 

The above relation has a simple geometric interpre- 
tation, the formulation of which requires further nota- 
tion. Let the label u of an integrated intensity item 
be fixed so that we may dispense with the subscript 
u in most of what follows. Let ma be the number of 
acentric reflexions in H~, mc be the number of centric 
reflexions in H i  and let m = ma+mc be the total 
number of contributors to the overlap pattern. For 
the sake of explicitness in subsequent formulae, it is 
convenient to order these reflexions so that acentric 
reflexions are listed first (j = 1 , . . . ,  ma) and centric 
reflexions next ( j =  m a + l , . . . ,  m). For each j =  
1 , . . . ,  m, let n~ be the dimension over the field R of 
real numbers of the structure factor attached to hj 
and let n be the total dimension over II~ of the collec- 
tion of structure factors contributing to I; thus, 

nj =2 if hi is acentric, (1.3a) 

nj = 1 if hi is centric, (1.3b) 

The right-hand side of (1.2) is then IIFll 2, the square 
of the length of F in R" for the ordinary Euclidean 
metric whose tensor is represented by the n × n identity 
matrix. 

The geometric interpretation announced above is 
now obvious: (1.2) states that F is located on a hyper- 
sphere S,_~ in IR" with radius ( l ° b S )  1/2 and the problem 
of completely specifying F once the associated 
intensity measurement is taken into account amounts 
to specifying the values of n -  1 angular coordinates 
on that hypersphere. 

1.2. The hyperphase problem 

The problem just stated is an n-dimensional version 
of the usual phase problem, the latter corresponding 
to n = 2. If one reads the defining relation (1.5) back- 
wards, it is clear that these angular coordinates per- 
form the dual functions of (1) separating the lumped 
modulus into the individual moduli of the contribut- 
ing reflexions and (2) specifying the phases or signs 
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of these separate moduli. Thus the problem of resolv- 
ing an overlapped intensity on the one hand and of 
phasing the separate moduli on the other hand appear 
as - so to speak - two mutually orthogonal projections 
of the same hyperphase problem formulated in terms 
of n-dimensional spherical geometry. In this ter- 
minology the hyperphase is essentially a unit vector 
t o  E S n _  l • 

This viewpoint has a precedent in the classical work 
of Franklin, Klug, Holmes and co-workers on the 
structure of tobacco mosaic virus (TMV). According 
to the theory of diffraction by helical fibres (Cochran, 
Crick & Vand, 1952; Franklin & Klug, 1955; Waser, 
1955a; Klug, Crick & Wyckoff, 1958), each item of 
intensity data may be written as 

I = E ]G~ [2 (1.6) 
rl 

where the G, are Fourier-Bessel coefficients (usually 
complex valued) and where the summation is over 
those values of n which are allowed by the selection 
rules expressing the helical symmetry. This relation 
is identical to (1.2), except for the multiplicity weight- 
ing. Its interpretation as the equation ofa hypersphere 
was implicit in early unpublished work by Franklin, 
Klug and Holmes on the applicability of the isomor- 
phous replacement method to TMV (Holmes, 1959) 
and first appeared in print with the papers by Stubbs 
& Diamond (1975) and Holmes, Stubbs, Mandelkow 
& Gallwitz (1975). The latter paper alludes (p. 193) 
to a possible parametrization of the separation prob- 
lem for two (acentric) overlapping terms by means 
of an extra phase angle and points out that the 
recovery of the two complex Fourier-Bessel 
coefficients ' . . .  may be formulated in a way analogous 
to the classic crystallographic phase problem but with 
three unknown parameters rather than one'. Sub- 
sequent work proceeded by the isomorphous replace- 
ment method and this viewpoint never developed 
beyond the level of a metaphor, but the credit for 
first identifying the hyperphase problem clearly 
belongs to these authors. The main novelty of the 
work about to be presented resides in a quantitative 
elaboration of this picture and in the derivation and 
exploitation of its statistical properties. In this 
respect, the equivalence between the resolution of 
overlaps and the determination of phases becomes 
fundamental in the integrations over hyperspheres by 
means of which all the subsequent statistical results 
are derived. 

1.3. Spherical geometry 

The geometric picture just described places n- 
dimensional spherical geometry in the same central 
r61e as that played by the geometry of the phase circle 
in the absence of overlap. Since this geometry for 
general n is less familiar and more involved than for 

n = 1 or n = 2, section A1 of the Appendix summarizes 
the main definitions and results required in the course 
of this work. The reader is invited to study § A1 at 
this point. 

In the absence of overlap (m = 1) for single-crystal 
data (p = 1), an intensity measurement locates F on 
a zero-dimensional sphere So in R 1 (i.e. a pair of 
points, see § AI.1) for a centric reflexion (hi-- 1) or 
on a one-dimensional sphere $1 in R E (i.e. a circle) 
for an acentric reflexion (nl = 2). The missing infor- 
mation needed to go from (/obs)l/2 to F is a sign in 
the centric case and a polar angle (phase) in the 
acentric case. At this stage, the close relationship 
between the phase problem and the overlap problem 
may be visualized in its simplest setting by noticing 
that there is complete identity (see § A1.2) between 

(1) the phase problem for an acentric reflexion, 
where a phase between 0 and 27r must be specified 
[equation (A1.7a)]; 

(2) the overlap + sign problem for two overlapping 
centric reflexions with the same statistical weight, 
where a 'splitting angle' between 0 and ¢r/2 - i.e. a 
point of the positive quadrant - describes the separ- 
ation of the lumped modulus into two moduli 
[equation (A1.7b)], each of which then requires the 
specification of a sign [equation (A1.7c)]. 

In the presence of overlap (m > 1) for a general 
value of n, the missing coordinates are ( n - l )  
spherical polar angles which parametrize the points 
of a unit sphere Sn_l in R n. The definition of such 
angles for n = 1, 2, 3 is reasonably unique up to per- 
mutation of the axes. For general n, however, this is 
not the case, and some of the flexibility available in 
this choice (concerning which the reader is urged to 
consult §§ A1.3 to A1.5) can be used to advantage in 
parametrizing intensity overlap patterns. 

To a crystallographer, the most natural type of 
polyspherical coordinate system (§ A1.4) for param- 
etrizing the missing information attached to an over- 
lapped intensity consists in solving the overlap prob- 
lem (i.e. separating the m moduli) first and solving 
the phase problem (i.e. specifying ma phases and mc 
signs) next. By analogy with the example given above, 
the solution of the overlap problem entails the 
specification of a collection of m - 1 splitting angles 
between 0 and ¢r/2 (called pseudophases in what 
follows) defining a point of the positive unit hyperoc- 
rant S+~_~ (§ AI.1); the subsequent specification of 
phases and signs takes place at the next level of the 
associated binary tree (§ A1.3). This parametrization 
amounts to using a polyspherical coordinate system 
in which the real and imaginary parts of each acentric 
structure factor have the same ancestor node. 

Alternatively, we may use zonal coordinates 
+ 

(§ A1.5) on S,,_~, then m,, phases and mc signs. The 
zonal coordinates perform the same task as the 
pseudophases, but they retain more symmetry than 
the latter and are better suited to the calculation of 
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+ 
certain integrals over Sin-l, i.e. to integration over all 
possible solutions to the overlap problem. 

1.4. General statistical aspects o f  intensity overlap 

The geometric representation of intensity overlap 
makes it natural to derive probability distributions of 
overlapped intensities, under given assumptions, in 
two stages: 

(1) form the j.p.d, in R ~, under the given assump- 
tions, of the m structure factors contributing to the 
chosen intensity, using the methods established for 
single-crystal studies; 

(2) integrate out its angular dependence in R n to 
obtain the marginal distribution of R = [[FI[ = I 1/2 

This integration is not only over all possible phases 
or signs - as in the single-crystal case - but also over 
the pseudophases, i.e. over all possible ways of 
separating the total intensity I into separate 
intensities for the m overlapping reflexions. 

In this section, some general aspects of this pro- 
cedure will be examined as a prelude to the deriva- 
tions themselves. 

1.4.1. Change o f  metric. In the transition from 
j.p.d.'s of single-crystal structure factors to the distri- 
bution of vector F defined by (1.5), the change of 
metric introduced in § 1.1 must be taken into account. 

Let F~c denote the vector in R n with components 
AI, BI, A2, B2 , . . .  , Am,, Bmo, Urea+l ,  Cma+2, . . .  , Urn. 
Then (1.5) may be rewritten in the form 

F=T1/2Fsc (1.7) 

where T is defined by (1.4). 
Similarly, let Q~c denote the covariance matrix 

between the components of F~c under given assump- 
tions regarding the distribution q(x) of random 
atomic positions (the calculation of Qs~ is detailed in 
§ A3.2). Then the covariance matrix Q between the 
components of F under the same assumptions will be 

Q = T l / 2 Q s c T l / 2 .  (1.8) 

1.4.2. Effect on offsets in non-central distributions. 
In single-crystal studies, the distribution of F~c 
becomes non-central (i.e. centred away from the origin 
in R n) whenever the distribution q(x) is non-uniform 
and /o r  known fragments forming a partial structure 
are assumed to be present. The centroid of the distri- 
bution of F~c may then be written 

-4- l~ par Fs~ = (Fsc)q - - s c  • (1.9) 

When going over to powder data, this centroid vector 
must be transformed according to 

F c = TI/EFsC c (1.10) 

to produce the centroid of the distribution of F. 
Conversely, if a conditional centroid (F) is sub- 

sequently calculated for F by the methods of § 4, 

(1.10) must be applied backwards in order to recover 
the corresponding single-crystal structure factors 
(Fsc), e.g. to compute a 'centroid map'  (§ 6.6). 

1.4.3. Effect on variances. A remarkable 
phenomenon occurs in the calculation of the covari- 
ance matrix Q under the assumptions used to derive 
Wilson's statistics for single-crystal intensities, i.e. for 
random atoms uniformly distributed away from 
special positions. 

In this special case (see § A3.3) we have, according 
to (A3.11a, b), 

Q = o'2 diag (pie1~2, p i e 1 ~ 2 , . . . ,  p,,,e,,,°/2, p,,oem°/2, 

p,n.+lem.+l, . . . , p,,,e,,,) 

where o.2 is the common value of all the o.2(hj). 
For each of the acentric reflexions ( j  = 1, . . . ,  ma) 

we have 

½p~ej=½2lGhjllGhjl by (A2.20a) and (A3.14) 

= I G[ by (A2.3), 

while for each of the centric reflexions ( j =  ma+ 
1 , . . . ,  m) we have 

p j e j  = IGhjllGh, I 
=IGI 

by (A2.20b) and (A3.14) 

by (A2.3). 

Therefore the variances of all n components are 
equal: 

with 

Q = diag (,Y, Z , . . . ,  ~ )  (1.11) 

=lGlo.2. (1.12) 
This remarkable 'equal-variance' property is a con- 
sequence of a double cancellation: 

that between IGh, I and IGhjl, which is a general 
property of group actions (§A2.2); 

that between the factor of 2 in Phi associated with 
Friedel expansion and the factor ½ in Wilson's 
statistics associated with acentricity (§§ A2.6, A3.3). 

This result could be rephrased into a Parseval-like 
theorem stating that the expected total intensity in 
each full orbit is the same, where a 'full orbit' (§A2.6) 
incorporates Friedel expansion. 

1.4.4. Scalar, diagonal and block-diagonal approxi- 
mations. Strictly speaking we should apply the two- 
stage procedure outlined at the outset (§ 1.4) starting 
from the j.p.d, of all single-crystal structure factors, 
to obtain the joint  distribution of all the overlapped 
intensities present in a given powder diagram. This 
would retain all the correlations between overlapped 
intensities which result from the correlations initially 
present between the structure factors. This is, 
however, a particularly difficult task and approxima- 
tions have to be made. 
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In the first place, we shall not seek to calculate the 
correlations between the integrated intensities 
belonging to different peaks of the diagram. This 
amounts to retaining only the correlations between 
the structure factors contributing to each peak, i.e. 
present in each matrix Q considered above, and may 
be called the block-diagonal approximation. For each 
item of intensity data, the associated Q matrix is 
symmetric, hence can be diagonalized in an ortho- 
normal basis of eigenvectors. This change of basis is 
an orthogonal transformation which leaves invariant 
the hypersphere IIFII = (lObS),/2 defined by the data. 
Therefore, at the cost of a matrix diagonalization per 
data item, the block-diagonal approximation can be 
reduced to the diagonal approximation in which only 
the variances are non-zero (but can all be different). 
Finally, the most drastic level of approximation is to 
assume that Q is a scalar multiple of the identity 
matrix. As shown above in § 1.4.3, this scalar approxi- 
mation is adequate under the assumptions leading to 
Wilson's statistics. 

For practical purposes, therefore, the following 
cases must be considered in the ensuing derivations: 

(1) the equal-variance case, i.e. the scalar approxi- 
mation, for both central and non-central distribu- 
tions; 

(2) the unequal-variance case, which leads to the 
diagonal and block-diagonal approximations, for 
both central and non-central distributions. 

When using the block-diagonal approximation for 
a non-central distribution, care must be taken to rotate 
the offset vector (1.10) by the diagonalizing transfor- 
mation before using it in the formulae derived below. 

2. Powder intensity statistics: central distributions 

We are now in a position to derive the expression for 
the distribution of integrated intensities recorded by 
the powder method under the standard hypothesis 
that the structure consists of equal atoms uniformly 
and independently distributed in the asymmetric unit. 
In the single-crystal case, this is the assumption under 
which both Wilson statistics and the probabilistic 
phase relations of conventional direct methods are 
established. 

2.0. Joint distribution of  the members of  an overlap 

Methods described elsewhere (Wilson, 1949, 1950; 
Hauptman & Karle, 1953; Bertaut, 1955, 1956a; Klug, 
1958) allow one to approximate the joint distribution 
of the m single-crystal structure factors contributing 
to an overlapped intensity by a multivariate Gaussian 
in n dimensions, where n is the number of degrees 
of freedom (1.3c). The assumption of uniform distri- 
bution implies, by the moment calculations of § A3.3, 
that this distribution is central, that its covariance 
matrix Q,¢ is diagonal and that the diagonal elements 
are the statistical weights of the contributing reflexions 

repeated according to the number of degrees of free- 
dom (1.3a, b) attached to each reflexion: 

Qsc = diag (el ,  el,  e2, e 2 , . . . ,  emo, e,,o, 

e,,,o+,, e,,o+2, • • •, e,,). (2.0) 

When the effects of reflexion multiplicity and of 
centric character are taken into account (§ 1.4.3), it 
follows according to (1.11) that each of the n 
one-dimensional components Fk of the vector F 
defined in (1.5) has a Gaussian distribution with mean 
0 and the same variance 

Z=IGIx0.2, (2.1) 

where 0" 2 is the common value of all the 0"2(h~) (the 
atoms are supposed to be isotropic). Furthermore, 
distinct components of  F are uncorrelated. This wil l 
be called the equal-variance case. 

In some cases the property of equal variances for 
all degrees of freedom is no longer satisfied. This may 
happen for powder data if the observational variances 
are incorporated into the statistical variance, but the 
most important instance of unequal variances will 
occur in the treatment of Laue data (see § 8). In this 
case the scattering factors, and hence the sums 0"2(hi), 
will be different for the m distinct harmonics con- 
tributing to a given overlapped intensity. Moreover, 
these harmonics will be scattering different 
wavelengths of the incident polychromatic X-rays, so 
that the spectral composition of the incident beam, 
together with any wavelength dependence in the 
response of the detector, will cause further inequality 
between the variances of the raw intensities pertaining 
to each of these harmonics. The unequal variance case 
is thus one of genuine interest and it is also a natural 
intermediate in the derivation of the non-central dis- 
tribution (3.11) which is of great practical importance 
for powders. 

2.1. The equal-variance case 

The probability density function of F in R", which 
will be denoted Pn;~, is given by 

P. ,z(F) d"F= le'[ (2"rr2~) - '/2 exp [ -  F~/2~] dFk 
k = l  

= ( 2 7 r ~ )  - n / 2  exp [ -  (2~;)-'11FI] 2] d~F. 

(2.2) 

Going over to spherical polar coordinates and putting 
R = Ilfll we  have 

d " F =  R n-l dR dSn-I 

where dS,_l is the surface element on the unit sphere 
S,_~ in R". Integrating over S,_~ we get the final 
expression 

P,,;z (R) dR = g2,g"-~(27r~) - ' /2  exp [ - R2 /2~]  dR 

(2.3) 
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in which 12, = 2 w " / 2 / F ( n / 2 )  is the surface area of 
S,,_~ [see (A4.8)]. This result may be expressed 
directly in terms of observable intensity I: 

1 "/2-1 exp ( - 1 / 2 2 )  
P,::~(l) d l =  (2X . ) , /2F(n /2 )  dL (2.4) 

In terms of normalized intensity x = R2/,~, this may 
be recognized as a A '~ distr ibution with n degrees of 
freedom: 

x "/2-! exp ( - x / 2 )  
P , ; z ( x )  d x -  2 , / 2 F ( n / 2 )  dx  (2.5) 

[see e.g. Cram6r (1946), p. 233]. For n = 1 and n = 2, 
these distributions coincide with the Wilson distribu- 
tions for centric and acentric single-crystal reflexions 
respectively, provided X is replaced by the variances 
given by (A3.11a, b). 

2.2. The unequal-variance case 

To distinguish probabil i ty  densities for unequal  
variances from those with equal variances derived in 
§ 2.1, the latter will be denoted by utl> and the former Z n ; ~  

by o~,-) H e r e n = ( n  n2 n,, ) is a vector of num- Zn; .~ , "  • i , , • • • , 

bers of  degrees of  freedom, and ~ = ( 2 ; 1 , 2 2 , . . . ,  .g,,) 
is a vector of variances for each of the rn lots of 
degrees of freedom. 

The case m = 2 will be treated first, as it leads to 
an expression involving only a well known special 
function. Using p.d.f. 's in terms of  intensity as given 
by (2.4) we have 
pt2~ .;z~ (1) 

! 

_ ~ p l l )  :x~pII) : I - x )  dx  - -  n l ; ~ t \  ] n2;~, '2~ 
0 

= [ e x p  ( -1 /2X,2) / (2X,  )",/2(2x, )n j2F(n~ /2 )F(n2 /2 ) ]  
! 

X I Xnl/2-l(1 - X )  n 2 / 2 - 1  

0 

x exp [ - ( 1 / 2 ) ( 1 / X ~ -  1/~;2)] dl. 

Recalling that  the exponent ial  function is a oFo hyper- 
geometric series (§A5.1)  and invoking identity 
(A5.5), we find 

p~2) .:~(1) 

= [exp ( -1 /2X.2)1  ~",+"~)/2-~ 

x {(22)" , /2(22)"J2F[(n,  + n2)/2]}- ' ]  

x ,  F,[ n, /2;  (n, + n~)/2; - ½(1/~; ,-  1/22~)1]. 

(2.6) 

This expression seems at first sight to lack symmetry  
with respect to the permuta t ion  of  indices 1 and 2, 
but this symmetry  can be shown to hold true by means 
of Kummer ' s  identity (A5.11) for the confluent hyper- 
geometric function ~F~. Taking 22 > 2~ ensures that  

,F, has a negative argument  and hence is an alternat- 
ing series. For nl = n2, this ~ F~ is in fact closely related 
to a modified Bessel function of order ( n ~ - l ) / 2  
[see (A6.1 b)]. 

For m -> 3 another  approach  is necessary, based on 
the use of zonal hyperspherical  coordinates (§ A1.5) 
in p.d.f. 's of moduli.  The radius R in dimension n is 
split into m positive radi R¢j(j  = 1 , . . . ,  m) by choos- 
ing a point on the positive hyperoctant  S~ , of  the 
unit sphere Sm-i. By the integration formula (Al .14)  
in zonal coordinates (§ A1.6) we have 

p~m~ro Rm-I  p~l) :R~I) 
S,*n • I 

. . .  p~l) , ( R~,,,) dS,,, X X n, , , ;Y .~ \  -1  

I _ j = l  

x exp - - ~ -  \2;1 + . . .  + X,,,/ 

S~1 -- I 

x ~ , , -1 . . .  (,~.,- 1 dS,,,_,. (2.7) 

The integral may be expanded  by termwise integra- 
tion of  the power series for the exponential :  

2 n 1 - 1  - 1  exp (zl ~:~ + . . .  + z,,,~:,,,) ~:1 . . .  ~,o' dS,,_l  
S~,_ 

. . . .  [ ,  ] 
~ -  E " " " E ~ 2 p ,  + ? l l - - I . .  " ~21Pm-I-FIm--I dSm_l 

p ~ = 0 p,, ,  = 0 S+ i 

x z f ' / p ,  ! . . .  z~,"/p,,, ! 

oo oo 

= ( 2 " - I ) - '  ~ . . .  ~ B ( p l + n l / 2 , . . . , p , , + n , , / 2 )  
Pt  = 0  p,,,  = 0  

x z P ' / p ~ ! . . . z P m / p , , !  (2.8) 

where the last t ransformat ion uses the expression 
of the moments  of the hyperoc tant  (§ A4.5) in terms 
of  the generalized Euler beta integral. The definition 
of the latter (A4.7), together  with that  of the 
Pochhammer  symbol (A5.2a)  and the expression 
(A4.8) for the area 12, of  the hypersphere  S,_~, give 
rise to the identity 

.(2, , . . .  12,,,. (2"-~) -~ B(p~ + n , /2 ,  . . . , p,~ + n,,,/2) 

= 12, ( n , / 2 ) p . . .  (n,,/2)p,,, (2.9) 
(n/2)p,+ . . . .  p., 

This prompts  us to consider  the following polyhyper-  
geometric function in m variables: 

,,,F]")( ot~ , . . . , a,,,; y; ZI  , . . . , Z m )  

o;3 cx2 

= y . . . .  Z [ (~ , )p , . . . (o~ , , , ) , , , , , / (v ) , , ,+ . . .+ , , , , , ]  
P i  = 0  p . ,  = 0  

x z f , / p , ! . . ,  z~,,/p,,,! (2.10) 

which is further described in § A5.5. 
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Then, defining ,~ as the geometric mean of the ,~j" 

=(~",,  . . .  X~,-')'/", (2.11) 

we may write the final expression 

P(, . )rR)-  ~"R"-I F ~''){n' n" n 
,,;zE, (2rr~) " /2"  ~ \ - 2 - ' ' " '  2 ' 2 '  

R 2 R 2 ) 
2 2 , ' ' ' "  2-~--" " (2.12) 

A more rapidly convergent expansion may be 
obtained by rewriting in (2.7) 

R2 ~]] 

for each j =  1 , . . . ,  m, which is valid for any X ' > 0 .  
Since ~j=, ~2 = 1, it follows that 

p ( , . b "  D n;Z ~ ' ' )  = O,,R"-'(2~.Y,) -'/2 exp [ - R2/2.,Y, '] 

x ,,,F~")[n,/2,..., n"/2; 

- ( R 2 / 2 ) ( I / 2 1  - I / Z ' ) , . . . ,  

- ( R 2 / 2 ) ( I / , Y , , . - I / 2 ' ) ] .  (2.14) 

The mean variance ~ '  may be chosen so as to produce 
the fastest possible convergence of  the series, e.g. so 
as to minimize maxj [ I / Z j  - I / 2 '  I. 

For m = 2, applying this procedure with 2 ' =  ~2 
yields a 2F] 2~ with z2 = 0 which reduces to ~F, in one 
variable, giving the previous formula (2.6). 

3. Powder intensity statistics: non-central distributions 

3.0. Joint distribution of the members of an overlap 

When the random atoms are non-uniformly dis- 
tributed, or when a partial structure is assumed to be 
present, the mathematical expectation (F) of F no 
longer vanishes and the distribution of F becomes 
non-central. These two assumptions are not truly 
independent since, in any sensible statistical model, 
the distribution q(x) of the random atoms must be 
affected by the presence of the partial structure and 
thus rendered non-uniform. 

The construction of joint probability distributions 
of structure factors for a given non-uniform distribu- 
tion q(x) of random atoms has been described by the 
author (Bricogne, 1984a, 1988; Bricogne & Gilmore, 
1990). The moments involved in the Gaussian 
approximation to these distributions are given 
explicitly in § A3.2 in terms of the Fourier coefficients 
of q(x): equation (A3.3) allows the computation of 
the vector denoted (F,c)q in (1.9) while equations 
(A3.6a, b,c,d), (A3.7a, b) and (A3.8) give the elements 
of the covariance matrix Qsc. Strictly speaking these 

expressions only take care of the trigonometric part 
of the statistical model and describe the distribution 
of unitary structure factors U rather than that of F. 
However, it is a simple matter to incorporate the 
atomic scattering factors into the model [Bricogne 
(1988), § 1] to obtain (17sc)q and Qs¢. The additional 
offset due to the partial structure may then be added 
to form the total offset Fs~c by (1.9). These must then 
be subjected to the changes of metric (1.10) and (1.8) 
respectively to produce the vector F ¢ and matrix Q 
used below. 

In the scalar approximation Q is assumed to be of 
the form Q -- diag (2 ; , . . . ,  2 ) ,  leading to a non-central 
version of the equal-variance distribution of § 2.1. In 
the diagonal approximation (to which the block- 
diagonal approximation can always be reduced, 
§1.4.4) we have instead Q = ( , ~ , , . . . , 2 1 , ~ 2 , . . . ,  
2 ;2 , . . . ,  2 : , , , . . . ,  2, .)  where ~j is repeated nj times. 
If the block-diagonal approximation was considered 
at the outset, care must be taken to rotate the offset 
vector F ~ by the diagonalizing transformation before 
using it in the formulae derived below. 

3.1. The equal-variance case 

Introduction of the offset vector F c into (2.2) yields 
the expression 

P.:~(FI F c ) 

= (2rrZ) -"/2 exp [ - ( 2 2 ) - '  IIF- F~ [12] 

_-(2~rZ)-"/z exp [ - (2Z)-~(llFI] z + IIFClI2)] 
x exp [(IIFII IIF II/Z) cos 0] (3.1) 

where 0 is the angle between F and F~: 

c o s  0 = FC/lll ll IIFCll. (3 .2)  

Using the abridged notation R = IIFII and r =  IIF~ll, 
we may thus write 

P,;z(FlFC) = (2rr,~) -"/2 exp [- (r  2 + R2)/22] 

x exp [(rR/,Y,) cos 0]. (3.3) 

To obtain the marginal distribution of R we must 
integrate this expression over the sphere with radius 
R in R". For that purpose we may choose a generalized 
spherical polar coordinate system with the x, axis 
along F c and with 0 as its first splitting angle. We are 
then in the situation to which relation (Al.13) of 
§ A1.6 applies, giving 

P.;z(RIr) 

= R"-'(2~r2)-"/2 exp [ - ( r 2 +  R2)/2.Y.] 

x ~ exp[(rR/.Y,)cosO]dS._, 
S,,_ i 

= R "- ' (2  rr2; )-"/2 exp [ - (r 2 + R2)/2~ ]12,,_, 

x S exp [(rR/.Y,) cos 0] sin "-2 0 dO. (3.4) 
0 
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Now we may invoke the following classical relations: 

(i) Poisson's integral [Watson (1944), pp. 24-25, 
47, 79]: 

~exp (z cos 0) sin 2~ 0 dO 
o 

= r(~+½)r(½)L(z)/(½z)~; (3.5a) 

(ii) relation (A4.9) in § A4.4: 

njn._~=r[(n-l)/2]r(½)/r(n/2); (3.5b) 

(iii) the expression (A6.1a) of modified Bessel 
functions in terms of the oF1 hypergeometric series: 

I~(z)=[(½z) ' /F(u+ 1 ) ] o F , [ - ;  *'+ 1; (½z)2]. (3.5c) 

Combining them with ,, = n / 2 - 1  allows (3.4) to be 
rewritten in the final form 

P,.:c (Rlr) = 12,,R"-'(2"tr.,Y, ) -'/2 exp [--(r 2 + R2)/2.~, ] 

×oF1[ -  ; n/2; (rR/2Z)2], (3.6a) 

which obviously reduces to (2.3) for r = 0 .  The 
expression of Poisson's integral in terms of oF1, 
deduced here from (3.5a, b, c), may be obtained 
directly by the method of spherical moments (see 
§ A6.2). 

In the particular case n = 2 ,  i .e. v = 0 ,  this 
expression reduces to 

P2;~(RIr) = ( R / Z )  exp [ - ( r  2 + R2)/2Z]Io(rR/2);  

(3.6b) 
1 it even remains valid for n = 1, i.e. u = - ~ ,  in which 

case the integration in (3.4) is over So and yields 
2 cosh z [this is related to identity (A6.4)]" 

Pl:~(Rlr) 

=(2/rrZ) 1/2 exp [ -  (r2+ R2)/2.Z] cosh ( rR /Z) .  

(3.6c) 

These two particular cases may be recognized as the 
Rice distribution (Rice, 1944, 1945) and its centric 
equivalent, given in equations (1.15a) and (1.16a) of 
Bricogne & Gilmore (1990). 

If instead of (3.5c) we use the ~F1 form of I~ after 
Kummer transformation [equation (A6.1c), § A6.1] 

I~(z)=[(½z)"eZ/F(e+ 1)]~F~(~,+½; 2 v +  1 ; - 2 z ) ,  

(3.5d) 

we obtain 

P,;~(RIr) = I2,,R"-~(2rr,Y, ) -'/2 exp [ - (  R - r)2/2Z] 

x ~F~[(n- 1)/2; n -  1; - 2 r R / 2 ] ,  (3.7) 

which is better suited to the case where R and r are 
both large compared to Z 1/2 but their difference is not. 

3.2. The unequal-variance case 

The notation introduced in § 2.2 to deal with 
unequal variances needs to be extended to accommo- 
date the n-dimensional offset vector F c. According to 
(1.5) we define a vector r = ( r l ,  r 2 , . . . ,  r,,,) of m 
partial multiplicity-weighted moduli by 

-W2rlAc~z+(B~.)2]l/2 for 1 < j <  ma (3.8a) 
r j  = p j  t l, c'tj I - -  - -  

rj =/,j-I/21"-'cllwjl forrn,~+l<j<rn._ - (3.8b) 

Using the same zonal hyperspherical coordinates as 
in § 2.2 we obtain the generalization of (2.7) in the 
form 

p ( m ) [  D -1 f .;~,, .Ir)= R" p(1) (R~:llrl) hi;)2 t 

S~n - t 

x . . .  × p~l~;:~(R~,,ir,,) dSm_, 

(2-2-~ji(/-2 exp ( - r2 ~ ] R " - I  2 Z J  

k=lexp - - - ~ - k ]  
+ 

S~.__ i 

(3.9) 

In order to integrate out the sC's we must seek a 
power-series expansion of the integrand in which 
terms are collected according to the powers of these 
variables. For this purpose we put uj = r~./2Zj and 
vj - - (R~)2 /2Zj  and we invoke identity (A.5.6a) with 
p = 0 a n d  q - - l :  

eUJoFl( - ; nj/2; --UjVj) 
o o  

= ~, IFI(-pj; nJ2; uj)v~,/pj!. (3.10) 
p j = 0  

The integrals of monomials in the sC's may then be 
written in terms of generalized beta functions. This 
yields an expansion of the integral into a power series 
in the m variables wj = - R 2 / 2 Z j .  Following essen- 
tially the same steps which lead from (2.7) to (2.12) 
one obtains the expression 
p ( m )  n;~ (RIr) = 12,R"-l(2rrZ) -"/2 

x , , ,F~")(nl/2, . . . ,  n,,,/2; n/2; 

{ - R 2 / 2 Z I } , . . . ,  {-R2/2Z,,,}) (3.11) 

where the curly brackets {.} indicate that in the series 
(2.10) for ,,F] "), z p, is to be formally replaced by 

{zP,}=exp( -u j ) ,F l ( -p j ;  nil2; uj)z~J (3.12a) 

=,F, (p j+nf f2 ;  n J 2 ; - u j ) z  p, (3.12b) 
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by Kummer's identity (A5.11). The i F l ' S  involved as 
coefficients in (3.12a) are, up to normalization, the 
associated Laguerre polynomials defined in (A5.12), 
and the identity used in (3.10) is simply the generating 
relation (A5.13). The functional expression (3.11) 
clearly coincides with (2.12) when r = 0  since the 
formal substitution (3.12) then boils down to the 
identical substitution. 

The convergence properties of expansion (3.11) 
may be improved by the same procedure as that 
described for transforming (2.10) into (2.11). 

4. Conditional distributions and their centroids 

In the previous two sections, the joint probability 
distribution in R" of all m structure factors contribut- 
ing to an overlap has been integrated over a hyper- 
sphere of radius R to obtain the marginal probability 
distribution of R = I ~/2. The present section considers 
the converse situation where the value of R is 
specified [e.g. R = ( lObS) l /2 ]  and where it is the condi- 
tional probability distribution (c.p.d. for short) of the 
hyperphase ~ ~ S,_~ which is being sought. 

In the equal-variance case this distribution is uni- 
form when F ~=0 and is unimodal with mode at 
,~'=F'/IIF~[[ when FC#O. In the unequal-variance 
case the c.p.d, can be multimodal and its maxima can 
be located by a Lagrange multiplier method [see e.g. 
Stubbs & Diamond (1975), pp. 715-716; Bricogne 
(1984a), § 7.1.3]. 

Frequently, however, it is the centroid iF) of this 
distribution, rather than its mode(s), which is of 
interest for the purpose of calculating a 'centroid 
map' (§ 6.6). This centroid structure-factor vector is 
defined by 

iF)= j" P(R~IFC)RtodS._, (4.1) 
S n  - I 

where P is given by (3.6a) or (3.11) and where the 
integration is over all unit vectors to ~ S,_~. 

4.1. The equal-variance case 

Let to c be the unit vector along F c, so that F ~ = r~  ~. 
By (3.1) P depends only on the angle 0 between to 
and to~; therefore the centroid vector iF) is along ~ 
and may be written 

iF) = Ricos 0) to c (4.2) 
with 

icos 0)= P.:z(RIr)-' 5 P(RtoIF~) to.to~ dS._, 
S. _ I 

~exp (X cos 0) cos 0 sin "-2 0 dO 
0 

~exp (X cos 0) sin "-2 0 dO 
0 

with X -- rR/~,. The numerator may be obtained from 

the denominator by differentiation with respect to X, 
so that 

0 
(cos O)= ~--~log oF,(-; n/2; (½X) 2] 

½X o F l [ - ; n / 2 +  1;(½X) 2] 

n/2 oF,[-; n/2; (½X) 2] 
½X V(n/2+ 1) 

n/2 r (n /2 )  

by (AS.7b) 

L/2(x)/(½x) "/2 
l./>l(X)/(½x) "/>' 

by (A6.1a) 

(4.3) 

Extensive cancellation occurs in this expression, 
using in particular (A4.2a), yielding the remarkably 
simple result: 

iF) = R[l. /2(X)/l . /z_,(X)]to" with X = rRIZ. 

(4.4) 

For n = 2, this formula is identical to that given by 
Sim (1959), while for n = l  it gives the centric 
equivalent of Sim's formula where, by virtue of (A6.4) 
and (A6.5), the quotient is a hyperbolic tangent (see 
also Cochran & Woolfson, 1955). 

Once iF) has been calculated in this way, the change 
of metric (1.7) must be applied backwards to retrieve 
the single-crystal structure factors required for the 
computation of a map. 

4.2. The unequal-variance case 

Let us use, as in § 2.2 and § 3.2, a system of zonal 
coordinates: a point ~ S+m_~ defines a splitting of R 
into rn partial radii R~, and to each such radius is 
associated a phase % (zero- or one-dimensional). 

The integration over S,-1 involved in (4.1) can be 
performed in two steps, according to (AI.14): 

(i) For each value of~ we integrate over the phases 
~ ,  ~ 2 , . . . ,  ~,, to obtain a centroid vector (F)(~) in 
which the j th structure factor will be denoted 
(F~)(~). By the previous calculation, iFj)(~) has phase 
~ (independent of 6) and modulus 

liFj)(~)l = KjR~icos (~oj - ~o;)) 

~rjR¢/ g 
= KjR~ 

nJ2 

, g / j  

= K,R ~ # 

x o F , [ - " - ~ +  1; (~ ~)R~ 2 ] (4.5) 
, g / j  

where 

K j  = a. R",-'l(2~g)"/~. 
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(2) These centroid vectors are averaged over all 
possible ~'s by integration over S~_1, each ~ being 
given the weight 

p(R~IF c) = o(I) tR~l r l  ) ~nl;..vlt 

x x P(~) . . .  ,,_,;x,_,(R~)_, I rj_ !) 

x P(') (R~+,lrj+,) nj~-i;Yi+l 

o(') tR~,,,[r,,,). (4.6) X . . . X ~n . , ; . y .m  t 

For each j the average modulus 1<6)1 may be written 
as an integral  similar to (3.9) but in which the oF~ 
factor for j is replaced by the r.h.s, of (4.5). The 
analogue of step (2.8) then produces a generalized 
beta function in which the j th  argument is p~ + nj/2 + 1 
and (2.9) must be modified accordingly; using (A5.3) 
we find 

~ . ,  . . . J2 ,~(2"-~)- '  B ( p ,  + n , /2 ,  . . . , pj + n;/2 + l, 

. . . , p , , + n , , , / 2 )  

= ~,, n j /2  (n , /2 )p  . . . .  ( n J 2 +  l )p , . . .  (n,,/2)v,,, 

n / 2  ( n / 2 + l ) p , + . .  +p.~ 
(4.7) 

The centroid is then obtained by dividing by P(,~'d(R [r) 
as given by (3.11), giving 

IF(.., { n, ._ Rnj2, j ,, , \ - ~ - , . . . , 2  +-~ 1 , . . . ,  2 '  2 + 1(6}1 l; 

_ R 2 { 
X 

L \ 2 ' ' ' "  2 ' ' " '  2 ' 2 '  
_ R 2 -1 

where the formal substitution rules (3.12) apply as 
written for the denominator,  but with the second 
parameter in the ~F~ changed to n J 2 + l  in the 
numerator. 

In view of the differentiation identity (A5.15) this 
could also be written in terms of the logarithmic 
derivative of ,,,F~ m) with respect to zj, underlining the 
formal similarity with (4.3) in the equal-variance case. 

4.3. Treatment  o f  partial peak  overlaps 

Powder diffraction diagrams often display 'massifs' 
of partly resolved peaks and the integrated intensities 
corresponding to these peaks then carry highly corre- 
lated estimation errors. In this case one cannot simply 

lobs lobs substitute separate values -1 , • • •, -M into the distri- 
bution P(F);  instead one should integrate over a 
range of simultaneous values of these intensities, 
using as a weight their observational probability 
(which contains a description of the error correla- 
tions). 

This procedure unfortunately does not seem to be 
analytically tractable, but the necessary integration 
can be carried out numerically from the above 
expressions. 

5. Data preparation for direct phase determination 
from powder data 

5.0. Likelihood funct ions  

As was done previously for the single-crystal case 
[Bricogne (1984a), § 4.2.2(2); Bricogne (1988), § 0.6; 
Bricogne & Gilmore (1990), § 1.4], the likelihood 
A (Y() of a hypothesis ~ will be defined as the proba- 
bility it assigned to the outcome of an observation 
before that observation was carried out. In the present 
case, let Y( be a hypothesis leading to a probability 
distribution P(R,13~ ) for each item u of integrated 
intensity. Typically Y( will consist in assuming certain 
values for the scale factor and the global temperature 
factor; for the structure factors attached to a subset 
of reflexions; and /o r  fixed locations for some struc- 
tural fragments. Then, in the diagonal approximation, 
the distributions P(Ru[~)  for different items u are 
independent, so that 

Nohs 

A(Y()= r I  P(RulYO.  (5.1) 
u=l 

The 'null hypothesis '  ;7(o that all atoms are randomly 
and uniformly distributed (hence that there are no 
fragments) and that the scale and temperature factors 
have the values given e.g. by a Wilson plot may be 
used as a reference. Other hypotheses may then be 
tested against ~0 by considering the likelihood ratio 
A (Y()/A (~o) or its logarithm, the log-likelihood gain 
L ( ~ ) - L ( ~ o ) .  The distributions P ( R I ~ )  used in 
forming these criteria will be (2.3), (2.12), (3.6) or 
(3.11) according to the nature of Y( with respect to 
centrality and variance equality. These criteria are 
thus completely specified by the derivations carried 
out so far. 

When the powder pattern contains massifs of 
peaks, the remark made in §4.3 applies and the 
substitutions in (5.1) must be replaced by integrations. 
Bayes's theorem indicates that it is the log-likelihood 
gain which should be integrated with respect to the 
observational joint distribution of the relevant R ° b s  . 

5.1. Normal izat ion o f  powder  diffraction intensities 

Determining the global scale and temperature fac- 
tors which put the raw observed intensities on an 
absolute scale and correct for thermal motion is an 
essential prerequisite to the use of statistical phasing 
methods. Furthermore, as structural information 
accrues during the phasing process, re-normalization 
will often be necessary to ensure that the random- 
atom hypothesis is being used in a quantitatively 
correct fashion. 
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Certain aspects of the normalization problem are 
still open issues in the single-crystal case. In this 
section new procedures are proposed which simul- 
taneously solve these problems for single crystals and 
for powders. 

5.1.1. Normalization by maximum likelihood. The 
maximization of the likelihood with respect to global 
scale and temperature factors constitutes the method 
of choice for the estimation of these parameters. It 
has the advantage that it uses all the information 
available in the expressions for the various factors 
P(R. , I~)  rather than that contained in the first few 
moments of these distributions. 

For each data item u (u = 1 , . . . ,  Nobs) let s~ and 
0.2(u) be the common values of (sin 0)/A and of 0.2 
for the contributing Bragg reflexions and let n,, be 
the total number of degrees of freedom. The 
hypothesis that the atoms are randomly and uniformly 
distributed and that k and B are such that R °b~ x k x 
exp ( -Bs  2) is on an absolute scale leads to the relation 

,Y,,,=[lGl0.2(u)/k2]exp(EBs2.,) (5.2) 

and hence, by (2.3), to the log-likelihood 

Nobs 
L(k, B) = E log P,~;~ (R °b~) 

u = l  

Nobs 

= constant+ Y. [(n~ - 1) log R °bs 
u = l  

(5.3a) 

-(n. , /2) log2~-(R°b')2/22,,]. (5.3b) 

It is straightforward to maximize this expression with 
respect to k and B by a Newton-Raphson method, 
in which the derivatives of L with respect to k and 
B are obtained by the chain rule through (5.2) from 
the derivatives of (2.3) with respect to ,X. 

For non-uniformly distributed random atoms 
and /o r  in the presence of a known structural frag- 
ment, let FC~ ~ be the offset vector on an absolute 
scale. For given assumed values of k and B we have 
the relations 

F~= k - '  exp (Bs2)F¢, a'c. (5.4) 

In the scalar approximation (5.2) holds, although 0"2 
should now be calculated by summing only over the 
random atoms in (A3.12), i.e. excluding the atoms in 
the fragment. By (3.6a), putting r., = IIF~II, this gives 
the log-likelihood: 

Nobs 
obs L ( k , B ) =  E log Pnu;~u(R~ Ir,,) (5.5a) 

u = '  

Nobs 

= c o n s t a n t +  ~ {(n,, - 1) log R °bs 
u = '  

(5.5b) 

(n.,/2) log,~., [ r2+  obs 2 -- -- ( R . , )  ]/22L 

+ log 0Fl[ - ; n,/2; (ruR°b'/2~,,,)2]}. 

This can also be maximized with respect to k and B 
by a Newton-Raphson method involving the deriva- 
tives of (3.6a) with respect to r as well as .,S, affording 
a new estimate of these parameters in the light of the 
extra structural assumptions made. 

Similar procedures can be applied when the 
variances are unequal, using distributions (2.12) 
and (3.11) in the central and non-central cases 
respectively. 

5.1.2. Normalization by the method of moments. The 
normalization of single-crystal data by the Wilson 
plot method assumes uniformly distributed random 
atoms and is based on relation (A3.13b) 

(1Fh[ 2 ) = eh 0.2 (h) ( 5.6a ) 

being obeyed when the F 's  are on an absolute scale 
and temperature-corrected. This procedure can be 
extended to powder data under the same assumptions 
by using instead the variance formula 

<lll~,,llb = nulGl0.2(u) (5.6b) 

which follows from (1.11) and (1.12). Comparison of 
(5.6a) and (5.6b) shows that raw integrated intensities 
from a powder diagram, after absorption corrections, 
can be scaled and temperature-corrected by means 
of a single-crystal normalization program by simply 
replacing e, by n.,lGI. The same program will then 
produce quasi-normalized and unitary structure- 
factor amplitudes, defined for single-crystal data as 

IE, I = Ifhl/[e,0.2(h)] '/= , IU, l=lF, II0.~(h) (5.7a) 

and for powder data as 

l iE .  II = IIF.II/[n,.IGI0.=(u)] '/=, 
(5 .7b)  

II u . I I  = I IF . I I /0 . , (u )  
where o- 1 is the sum of the atomic scattering factors. 

In the non-central case, i.e. for non-uniformly 
distributed atoms and /o r  in the presence of known 
fragments, it is necessary to evaluate the second 
moments of the distributions P(RI~).  This will be 
done for equal variances only, since the method of 
moments is only an approximation and should be 
viewed as a preliminary stage to maximum-likelihood 
scaling (§ 5.1.1). In this case the kth moment of 
distribution (3.6a) may be written 

(R k) = / ' 2 ,  (2"tr.~) -n/2 exp ( -- r2/2,Y,) 
oo 

x ~ exp ( -  RE/2~,)R k+"-' 
0 

xoF~[ -  ; n/2; (rg/2,Y, ) 2] dR. 

Putting u = r2/2.~, V = R2/22 and using (A4.8) this 
simplifies to 

(gk)=[(2~,)k/2/F(n/2)] e-" 

× 7 e-Vv(k+")/2-~ oF,( - ; n/2; uv) dr. 
0 
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Using identity (AS.6b) for p = 0  and q =  1 [see 
Rainville (1960), Ex. 4, p. 128], together with 
Kummer's transformation (A5.11), yields 

(gk)=(2,~)k /2{r[(k  + n ) / 2 ] / r ( n / 2 ) }  

x , F , ( - k / 2 ;  n/2; - r2/22~). (5.8) 

For k even the iF1 in this expression is an associated 
Laguerre polynomial (§ A5.4). For k = 2 the relation 
L{~)(x) = 1 + a - x with a = n / 2 - 1  gives 

(R2)= n2  + r 2 (5.9) 

which agrees with (5.6b) in the central case r = 0. 
In the single-crystal case this becomes 

(IFhl2) = eho.dh) + IFf, I 2 (5.10) 

where o'2(!1 ) is calculated excluding the atoms in the 
fragment. 

5.2. Space group identification and lfittice indexing 

The earliest applications of Wilson's statistics to 
single crystals were tests for centrosymmetry (Wilson, 
1949, 1950) which were later extended to more subtle 
tests for space-group identification (Rogers, 1950). 
The subject has been reviewed by Hargreaves 
(chapter 3 in Lipson & Cochran, 1968) and 
Srinivasan & Parthasarathy (1976). It is easily seen 
that these applications are based on the fact that 
different hypotheses about the space group of a crystal 
lead to predicting different variances and numbers of 
degrees of freedom for the distributions of intensity 
in various classes of reflexions and that these predic- 
tions can be tested by inspection of the measured 
data through what amounts to a likelihood criterion. 

For powder data, the same possibility exists: 
although the multiplicity factor leads to variance 
equalization between all the degrees of freedom, the 
number nu of degrees of freedom for each data item 
u may vary for different choices of space group. If 
the lattice assignment itself is ambiguous [see e.g. 
Paszkowicz (1987) for a survey of indexing criteria 
and of methods for their optimization], different 
modes of indexing may lead to different predicted 
overlap patterns, hence to different predicted values 
of n.,. 

Let n~ ale denote the number of degrees of freedom 
associated to data item u under hypothesis ~ con- 
cerning the lattice and space group. Then the 
maximum log-likelihood value Lmax(~) achieved 
after determination of k and B according to (5.3) will 
act as a figure of merit for ~ and the comparison of 
the values of Lmax obtained for different hypotheses 
is the natural extension of the tests developed for 
single crystals. 

Should discrimination remain impossible, structure 
determination can be undertaken for each hypothesis 
by the methods of § 6 and the progress of Lma x as  

phase assumptions are generated and ranked will 
indicate which hypothesis is the most viable. 

5.3. Detection of heavy atoms and other structural 
fragments 

Different assumptions concerning the presence, 
orientation and position of a structural fragment will 
lead to different values of the contribution F par to the 
offset vector of the distribution P(Ru ] ru ) for each data 
item u; this may be written formally as 

F P a r =  F p a r ( f l  t )  u - -u  \ v ,  

where 0 = (07,02, 03) is a triple of Euler angles and 
t is a position vector. The most powerful test for 
detecting and locating a fragment [Bricogne (1988), 
§ 4] will therefore be based on a log-likelihood gain 
of the form 

Nobs 

E {log P,.:.~.[R°bSlk, B, r.,(0, t)] 
u = l  

D °bsl b - l o g  P,~;~( , , , ,  ,,,.o, Bo, 0)} (5.11) 

where ko and B0 are determined by (5.3) assuming 
that there is no fragment (2) ° incorporates all atoms) 
while k and B are determined by (5.5) under the 
assumption that the fragment is present (~ ,  excludes 
the atoms in the fragment) and is placed according 
to (O, t). 

If the amplitude r of the contribution from the 
partial structure is assumed to be small, a differential 
approximation can be obtained by examining the 
dependence of log P(R[r) on r 2 for small r2: 

0 
a(r2 ) [log P.;:~(RIr)] 

3 f r2+ R 2 

a(r 2) ~ 22: t-logoF, - ; ~ ;  

1 ( R ) 2  1 o F , [ - ' n / 2 + l ' ( r R / 2 . Y , )  2] 
_ _ _ . o r _  ~ , 

2.Y, - ~  n/2 o G [ - ;  n/2; (rR/2.Y,) 2] 

by (AS.7b). For r 2 =  0, this reduces to 

0 [log P,,.~(R[r)(9]I O(r 2) r2=O 

= (2Z')-'(R2/n.,Y, - 1) = (2~v)-'( E 2 -  1 ) 

(5.12) 

where (1.12) and (5.7b) have been used in the final 
rewriting. The differential approximation to the log- 
likelihood gain thus leads to correlating the spheri- 
cally averaged Patterson of the putative heavy atom 
with what may be recognized as a spherically 
averaged origin-subtracted Patterson of the unknown 
structure. 

This connection between log-likelihood detection 
and Patterson superposition will be developed more 
extensively elsewhere. 

(5.13) 
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6. Adaptation of the tree-directed multisolution 
strategy to powders 

All the elements are now in place for adapting to 
powder data the multisolution method of direct phase 
determination described in § 3 of Bricogne & Gilmore 
(1990) for single-crystal data (this paper will be refer- 
red to as I throughout this section). Most of the 
changes consist in using the new likelihood functions 
(§ 5.0) which take intensity overlap into account, so 
that the overall strategy (I, § 3.1) remains identical, 
but a number of practical difficulties can arise which 
require special consideration. 

6.1. Origin definition 

If sufficiently many strong non-overlapped 
intensities are available, the origin can obviously be 
defined in the same way as for single-crystal data (see 
I, § 3.2.1). If such is not the case, however, at least 
one of the origin-fixing reflexions will have to be a 
contributor to a strong overlapped intensity. This 
entails an element of hazard since it is impossible to 
be certain at this early stage whether it is the desired 
reflexion, rather than other contributors to the over- 
lap, which is strong. The risk of an inadequate origin 
definition can be decreased if a strong overlap can 
be found in which several of the contributors would 
be eligible for origin definition. In particularly 
unfavourable cases where all the strongest normalized 
amplitudes are overlaps, it may be necessary to resort 
to 'pseudophase permutation'  (§6.3) to create 
inequivalent hypotheses concerning the separation of 
the overlapped intensities into individual ones and 
to choose different origin-defining reflexions for each 
hypothesis; the behaviour of the log-likelihood as 
phasing proceeds according to § 6.3 will eventually 
indicate the best choice. 

6.2. Enantiomorph discrimination 

The same remarks apply to this step as to the 
previous one. If overlapped intensities have to be 
used, enantiomorph discrimination consists in select- 
ing a hyperhemisphere in It~ ''o for one such overlap, 
ma being the number of acentric contributors to that 
overlap (§ 1.1). Should there be several candidates, 
the most efficient discriminator may be found by 
performing a rather fine-grained hyperphase permu- 
tation (§ 6.3) on each of them and evaluating the 
corresponding log-likelihood gains L. The distribu- 
tions of L will all be symmetric under central inver- 
sion in the subspace [~"a spanned by the imaginary 
structure-factor components,  and the best candidate 
will be that with the highest pair of distinct peaks 
related by this symmetry: selecting one of the peaks 
in that pair will fix the enantiomorph. 

6.3. Hyperphase permutation 

It seems natural, in the spirit of § 1.2, to call hyper- 
phase permutation the process of generating a rep- 
resentative sample of structure-factor values for the 
distinct Bragg reflexions contributing to an overlap 
for a given value of the total intensity. This consists 
in choosing a reasonably homogeneous distribution 
of points to ~ S,_~ on the surface of the unit hyper- 
sphere in R", where n is the number of degrees of 
freedom. 

The natural generalization of sign permutation for 
centrics and of quadrant permutation for acentrics is 
what may be called hyperoctant permutation. This 
amounts to using the vertices of the inscribed hyper- 
cube of S,_, ,  i.e. the 2" points with coordinates 

(l°bS/n)l/2(+l, +1, ± 1 , . . . ,  ±1, +1) (n times). 

This may produce too coarse a sampling of S,_, for 
some applications, as it partitions the total intensity 
equally between the n degrees of freedom. Fine- 
grained samples can be produced by subdividing the 
faces of the hypercube and projecting that subdivision 
onto the hypersphere. More general optimal sub- 
divisions are obtainable by means of spherical codes 
or spherical designs (Conway & Sloane, 1988). 

In some cases (e.g. § 6.1) it is required to generate 
a sample of possible individual amplitudes 
(unphased) for the m members of an overlap. Accord- 
ing to the terminology introduced in § 1.3, this 
involves pseudophase permutation, which is the same 
operation as that just described but applied to the 
positive hyperoctant S +_ i rather than to S,_, .  

6.4. Evaluation and refinement of hyperphase 
assumptions 

A set of hyperphase assumptions for the reflexions 
of a 'basis set' completely specifies, in modulus and 
in phase [ via the reverse of (1.5)], the structure factors 
associated with these reflexions. The situation is thus 
completely analogous to that considered in the single- 
crystal case and these assumptions define a node of 
the multisolution tree (I, § 3.1.1). The prior distribu- 
tion of atoms q(x) can therefore be updated to the 
maximum-entropy distribution qME(x) compatible 
with these assumptions by the methods of I, § 2.3. 
The latter distribution in turn permits the evaluation 
of the j.p.d, of the members of each overlap (§ 3.0) 
and of the log-likelihood gain - and optionally its 
derivatives - for the second neighbourhood (closed 
by overlap) of the basis set with respect to a standard 
null hypothesis (§ 5.0). This affords precisely the same 
mechanism for evaluating and refining hyperphase 
assumptions as that used for single-crystal data 
(I, § 3.2.4, § 3.2.5, § 3.2.7). This procedure has been 
implemented and successfully applied and is 
described in more detail in Gilmore, Henderson & 
Bricogne (1991). 



G. BRICOGNE 817 

6.5. Breaking pseudosymmetries 

When the crystal symmetry is lower than that of 
its lattice, the powder method causes systematic over- 
laps which will tend to create pseudosymmetries in 
the map. This difficulty can be overcome by a pro- 
cedure similar to that proposed for enantiomorph 
discrimination (§ 6.2), in which the most effective 
pseudosymmetry breakers are selected by examining 
the sensitivity of the log-likelihood gains to hyper- 
phase choices for overlap members deemed 
equivalent by the pseudosymmetry but actually 
inequivalent under the true symmetry. 

6.6. Centroid maps 

The use of 'centroid maps'  for visual inspection (I, 
§ 1.6) can be extended to the powder case by means 
of the centroid formulae derived in § 4. These maps 
are analogous to the 'best' maps introduced by Blow 
& Crick (1959) and have the property that they mini- 
mize the expected mean-square error caused by the 
residual hyperphase errors. The possibility of includ- 
ing the overlapped reflexions in the calculation of 
these maps has been found in practice to produce 
worthwhile improvements [Gilmore, Henderson & 
Bricogne (1991), § 3.2]. 

7. Completion of structure determination for powders 

7.1. Fragment detection and recycling 

The method described in § 5.3 for detecting struc- 
tural fragments by calculating log-likelihood gains 
may be applied not only at the outset but at any stage 
of the phase-determination process, since (5.12) 
accommodates non-uniformly distributed random 
atoms. This detection procedure will be more sensitive 
in the presence than in the absence of phases and 
will evolve continuously from a correlation of 
Patterson function to a correlation of electron 
densities. 

A fragment, once detected unambiguously in this 
manner, can be recycled by incorporation into the 
known partial structure. This will strengthen the offset 
vector F c and decrease the dispersion (since the frag- 
ment atoms are withdrawn from the summation for 

), leading to sharper conditional distributions and 
hence to more detailed centroid maps. 

7.2. Log-likelihood as an optimal residual for structure 
refinement 

At a late stage where most of the structure is 
described as a known fragment, the residual disagree- 
ment between calculated and observed intensities may 
be modelled as above through the remaining random 
atoms (if any) together with some 'clutter' atoms 
[Bricogne (1988), § 3.1]. The refinement of the par- 
ameters describing the partial structural model, the 

localization of the remaining atoms and the charac- 
terization of the clutter distribution can then all take 
place simultaneously by maximization of the global 
log-likelihood gain (5.11) with respect to the relevant 
parameters, provided the statistical variances ~ are 
increased to reflect the observational variances. 

According to (3.7) the global log-likelihood gain 
will then tend to behave like a least-squares residual 
(the 1F~ term becomes a small perturbation when its 
argument is large and negative) in which the observa- 
tional variances have been incremented by the mean- 
square power from residual random atoms and 
clutter. As the level of the latter decreases, this 
refinement becomes a conventional least-squares 
refinement against integrated intensities. However, 
the adoption of the log-likelihood gain as a refinement 
criterion throughout can be expected to increase the 
radius of convergence of the procedure. 

It would be a simple matter to incorporate the peak 
profile information into this statistical analysis so as 
to obtain the global log-likelihood criterion directly 
in terms of the raw (unintegrated) counts provided 
by the powder diffractometer. The refinement pro- 
cedure just outlined would then afford an enhance- 
ment of the Rietveld method (Rietveld, 1967, 1969) 
as well as a connection with the phase-determination 
process itself. This possibility will be developed fur- 
ther in forthcoming publications. 

8. Discussion 

There have been previous attempts at overcoming the 
overlap problem by statistical means. Jauch (1987) 
used a Bayesian procedure to resolve partially over- 
laps in powder diagrams from membrane proteins by 
Wilson statistics and to use phase information from 
electron microscopy. His work, however, overlooked 
the rrle of statistical weights and the variance equaliz- 
ation phenomenon described in § 1.4.3, and hence 
had to consider centric and acentric reflexions separ- 
ately. No use was made of joint distributions of 
structure factors, so that phase determination was not 
considered. David (1987) advocated the use of a 
maximum-entropy criterion applied to the Patterson 
function as a means of resolving overlaps and solved 
a two-atom structure by this procedure (David, 1990). 
This appeal to entropy maximization is very different 
from the use made here in conjunction with the 
saddlepoint method, as discussed elsewhere 
[Bricogne (1988), §§ 0.5 and 7.7; Bricogne (1990)]. 

The work presented here attempts to bridge the 
gap between single-crystal and powder methods of 
crystal structure determination by building a common 
mathematical framework within which the statistical 
phasing techniques developed in the former can be 
adapted to the latter. The essential correctness and 
the practical utility of this approach are demonstrated 
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in the following paper (Gilmore, Henderson & 
Bricogne, 1991). 

The main thrust of this paper has been directed at 
the powder method. It should be clear, however, that 
the mathematical techniques established here are 
applicable with only minor alterations to any type of 
scattering data which may be viewed as single-crystal 
data corrupted by overlap, by reformulating the 
hyperphase problem in terms of the type of overlap 
encountered in each case: the analytical results con- 
tained in §§2, 3, 4 and the Appendix are then 
sufficiently general to allow the computation of likeli- 
hoods and of centroid maps on which all subsequent 
procedures (§§ 5, 6, 7) are based. A wide variety of 
structure-determination techniques thus become 
amenable to a single unified statistical treatment, with 
the converse benefit that any special phasing method 
developed for one of them becomes available to the 
others. The example treated here - namely the trans- 
position of direct methods and of the use of partial 
structures from single crystals to powders - illustrates 
this point. Other such transfers will be described in 
subsequent publications. 

These developments belong to the second stage of 
a Bayesian statistical approach to structure determi- 
nation initiated in a previous paper (Bricogne, 1988). 
In the initial stage of constructing joint distributions 
of single-crystal structure factors (§§ 2.0 and 3.0) this 
approach is capable 

(a) of accommodating arbitrary scattering factors 
(positive, negative or complex-valued) and therefore 
of dealing with neutron diffraction data; 

(b) of making use of contrast variation measure- 
ments for low-resolution phasing and of solvent 
flatness at higher resolution; 

(c) of giving an improved statistical treatment of 
the isomorphous replacement method through the 
systematic use of likelihood maximization in the 
detection of heavy atoms and in the refinement of 
their parameters; 

(d) of detecting and recycling partial structural 
fragments; 

(e) of exploiting the possible occurrence of non- 
crystallographic symmetries and of multiple crystal 
forms. 

In the second stage of consulting the available 
diffraction data to evaluate hypotheses relating to 
phase (or hyperphase) values and/or to structural or 
geometrical characteristics, the analytical methods 
of §§ 2, 3, 4 are capable of dealing with any type 
of intensity overlap and in particular with those 
produced by 

(1) twinned crystals; 
(2) helical fibres (e.g. tobacco mosaic virus, see 

§ 1.2); an analysis of the heavy-atom parameter 
refinement problem associated with the use of the 
isomorphous replacement method on data from 
helical fibres may be found in Bricogne (1984b); 

(3) poorly oriented fibres such as tubulin 
(Mandelkow, Thomas & Cohen, 1977; Beese, 
Stubbs & Cohen, 1987) which give rise to a pattern 
of overlap intermediate between those of fibres and 
of powders; 

(4) two-dimensional crystalline patches of mem- 
brane proteins adsorbed on mica sheets, some of 
which yield rich powder diagrams [e.g. the 'purple 
membrane' from Halobacterium halobium, see 
Henderson (1975) and Jauch (1987)]; 

(5) the harmonic overlap between the multiples of 
reflexions with coprime indices which occurs in data 
recorded by Laue photography with a polychromatic 
X-ray beam (Moffat, Szebenyi & Bilderback, 1984; 
Cruickshank, Helliwell & Moffat, 1987). 

The work presented here may thus be considered 
as a concrete illustration, in a well defined special 
case, of the power and flexibility of the methods 
available to implement the second stage of the 
Bayesian approach. 

This theoretical work has been the basis of a col- 
laboration with Dr C. J. Gilmore over the past three 
years. Its formulation has greatly benefited from the 
stimulation and encouragement provided by his tire- 
less enthusiasm to turn it into practice. This collabor- 
ation was'made possible by financial support from 
BP Research through an Extra-Mural Research 
Award. Discussions with Professor K. J. Packer, Dr 
M. J. Tricker and Dr R. C. Ward at the BP Research 
Centre, as well as their r61e in securing support, are 
gratefully acknowledged. I am most indebted to 
Trinity College, Cambridge, for continuing to make 
available ideal working conditions. 

APPENDIX 

The main mathematical definitions, theorems and 
derivations used in this work, and whose direct 
inclusion into the body of the paper would have 
disrupted the flow of the argument, have been collec- 
ted into this Appendix. Each section contains back- 
references to those parts of the paper where the results 
are actually used. 

e 

A 1. Spherical geometry in n dimensions 

This section is fundamental to the formulation and 
analysis of the hyperphase problem in § 1 and to the 
various integrations over hyperspheres carried out in 
§§ 2, 3 and 4. It is bound to retain a central importance 
in all subsequent developments relating to other types 
of intensity overlap. 

AI.1. Balls, spheres and octants. Let Ilxll denote the 
Euclidean norm of x E R". For n >-- 1 the unit n ball B, 
is defined by 

B. ={x~R"l Ilxll-< 1} (AI.I) 
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and the unit ( n -  1) sphere S,_, by 

a n ,  = {xe  R' I  Ilxll = 1} (A1.2) 

so that S , - i  is the boundary  of  B,. For n = 1, hence 
n -  1 = 0, B1 is the closed interval 

Bt = [ -1 ,  +1] (A1.3) 

and So, its boundary ,  is disconnected and consists of  
the two end-points  

So= {-1 ,  +1}. (A1.4) 

This degenerate case is much  less pathological  than 
might  be expected and various attributes of S , - i  
defined for general n [e.g. the surface area .0. of  
S ._ , ,  (A4.8)] still give correct values for n - 1  = 0  
(e.g..01 = 2 for a two-point space). 

The positive (hyper)octant 0+. is defined as that 
subset of  R" consisting of  points whose coordinates 
are all non-negative.  The positive unit (hyper)octant 
S,+_, is defined as the intersection of O ,  + and S,-1,  
i.e. as that subset of  S,_, consisting of  points whose 
coordinates are all non-negative: 

S+_I---- {X R"Ixl  X,, Ilxll = 1}. 

(A1.5) 

For n = 1 we obviously have So = {+1}. The surface 
area of + S ,_ ,  is .0 , /2"  [see (A4.8)], an expression 
which is still correct for n = 1. The moments  of  S , - I ,  ÷ 

+ 
i.e. the integrals over S ,_ ,  of  monomia l  functions of 
the coordinates,  are evaluated in § A4.5, (A4.10), in 
terms of  the generalized beta integrals (A4.7) defined 
and evaluated in § A4.3. 

A ball (or sphere or positive octant) of  radius R is 
the set of  points of  the form Rx where x belongs to 
a unit  ball (or unit  sphere or unit positive octant). 

A 1.2. Spherical polar coordinates: low-dimensional 
examples. Insight may be gained into the process of  
parametr iz ing the points of  S,_, by re-examining the 
definit ion of  the famil iar  polar  coordinate systems 
from a somewhat  unusual  viewpoint.  

For n = 1 we may write 

x = R cos tO, tO = 0 or zr, (A1.6) 

where R = ]xl is the radius of a zero-dimensional  
sphere { - R ,  +R} and tO is a 'zero-dimensional  phase ' ,  
i.e. essentially a sign. Both R and tO are uniquely  
defined, except for x = 0. 

For n = 2 the usual polar  coordinates system on 
the circle $1 is defined by 

x l = R cos 
0_-_~<2 , r  (A1.7a) 

x2 = R sin ~0 

and may be redefined as follows: 

RI = R cos O 
0 - - - 0 < 7 r / 2  (A1.Tb) 

R 2  - -  R sin 0 

together with 

Xl -- R1 cos to, (3,) I --" 0 or 
(A1.7c) 

x2 : R2 cos £02 092 - 0 or ~r. 

Here RI and R 2 a r e  obta ined by splitting the radius 
R of the one-d imens iona l  sphere S, by means  of the 
'spli t t ing angle '  0;  they are then treated as the partial 
radii of  two zero-dimensional  spheres and are 
assigned the zero-dimensional  phases to1 and to2. This 
parametr izat ion is unique except for xl = 0, in which 
case 0 may be taken as +7r /2  or - I r / 2 .  

For n = 3 the usual spherical  polar  coordinate sys- 
tem on S: 

x, = R sin 0 cos ~o 

x2 = R sin 0 sin ~ (A1.8a)  
0<_ ~ <2.rr 

x3 = R cos 0 

may similarly be redefined in terms of splitting angles 
and zero-dimensional  phases  as follows: 

R 3 --- R cos 02 

R ' =  R sin 02 0 -  02 < Ir/2 
(A1.8b) 

R, = R'  cos 01 0 -< 01 < zr/2 

R2 = R '  sin 01 

together with 

x, = RI cos to1 tOm = 0 or zr 

x2 = R2 cos to2 tOE = 0 or zr (A1.8c) 

X 3 -~- R 3 c o s  09 3 09  3 = 0 o r  "/7". 

The pattern displayed by these examples  will now 
be abstracted into a form suitable for generalization.  

A1.3. Spherical polar coordinates: binary tree rep- 
resentation. Two distinct operat ions are seen to be 
involved in a general coordinate  parametr izat ion of 
spheres: 

(a)  the use of  splitting angles, ranging from 0 to 
7r/2, to reduce the parametr izat ion of S,-1 to that of  
spheres of  smaller  d imension,  thus giving a recursive 
'descent '  solution to the problem; 

(b) the incorporat ion of  the signs (zero- 
d imensional  angles) of  the terminal  stages of the 
recursion into an extension of the range of  the last 
splitting angle used. 

A natural  representat ion of this succession of  split- 
tings is afforded by a binary tree defined according 
to the fol lowing rules (see Fig. 1): 

(1) To each node v of  the tree is associated 
a d imens ion  n(v) ;  
the radius R(v) of  a sphere S,(~)-I; 
a splitting angle O(v) if  n ( v ) >  1. 

(2) The root node of  the tree has d imens ion  n(v)  = 
n and radius R. 

(3) Each node v with 1 < n(v )< n, called an inter- 
mediate  node, has two successors, a left successor VL 
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and a right successor /'~R, such that 

n(,,,_) + n( , ,R) = n( , , ) ;  

R(vL) = R ( v )  cos ~b(v); 

R( VR) = R( v) sin 4'(v). 

(4) Nodes  v with n(v) = 1, called end nodes,  have 
no successors. Each end node is labelled by the index 
j o f the  Car tes ian  coordinate  xj defined by the success- 
ive splittings leading from the root node to that node. 

(5) The range of  the splitting angle 4'(v) associated 
with a node v is defined as follows: 

if neither vL nor VR is an end node,  

0-< 4'(v) < r r /2  

so that R(vL) and R(VR) are non-negative;  
if vL only is an end node,  

0 - < 6 ( ~ ) < r r  

so that coordinate  j ( v , )  is unrestricted but R (/*R) is 
non-negative;  

if VR only is an end node,  

- r r / 2 -  4 ' ( v ) <  rr /2 

so that coordinate  j(vR) is unrestricted but  R(vL) is 
non-negative;  

if both vL and VR are end nodes,  

0<- 4,(v) < 2rr 

so that both coordinates  are unrestricted. 
Extending in this way the range of  those splitting 

angles leading to end nodes is a convenient  way of  
incorporat ing the signs associated with the zero- 
dimensional  phases to used in the examples  of  § A1.2. 
Occasionally,  however,  it may  be preferable to keep 
all splitting angles between 0 and rr/2,  thus param-  
etrizing the positive octant  S,+_~, and to retain the 
zero-dimensional  angles t o ~ , . . . ,  to, explicitly as 
discrete parameters .  

By an e lementary proper ty  of  binary trees [see e.g. 
Standish (1980), pp. 53-54],  there are always n - 1  
intermediate  nodes ( including the root node)  for n 
end nodes;  hence there are n -  1 splitting angles in 
any parametr iza t ion of  S,_~ by this method.  

The examples  of  § A1.2 are then represented by 
the binary trees shown in Fig. 2. 

V 

VI A V R 
*" "4 ,' "4 

Fig. i. The basic building block of the binary-tree representation 
of an n-dimensional spherical polar coordinate system consists 
of a node v, whose left successor vL and right successor vu are 
defined by means of a splitting angle ~v- 

A 1.4. Polyspherical coordinates. The graphical  rep- 
resentation int roduced above makes it clear that  for 
n->4 there are several possible polar  coordinate  
systems, even if different ways of  labelling the end 
nodes are considered as equivalent.  This is i l lustrated 
by Fig. 3. 

For n > 4 the diversity is very great. For instance, 
the tree in Fig. 4 defines a parametr iza t ion of  R 7 by 

x~ = R sin 4'1 sin 4'3 cos 4'5 cos ~6 

x2 = R sin ~1 sin 4'3 cos 4'5 sin 4'6 

x3 = R sin I//I sin 4'3 sin 4'5 

x4= R cos ~ sin ~2 cos 4'4 (A1.9) 

xs = R cos 4'~ sin ~2 sin ~4 

X6= R cos 4'1 cos 4'2 

x7 = R sin 4'1 cos 4'3. 

Such polyspherical  coordinate  systems are con- 
sidered by Vilenkin (1968, pp. 495-497),  who uses a 
general tree rather  than a binary tree. This results in 
a complicated labelling scheme, less intelligible than 
the present  one. 

A1.5. Zonal coordinates. The method used so far  
is based on successive splittings of  an initial radius,  
each splitting being defined by an angle between 0 
and 7r/2, i.e. by a point of  S~. 

R R 

l 2 

I 2 

(a) eb) 

Fig. 2. Binary-tree representation of the usual spherical polar 
coordinate systems (a) for n = 2 and (b) for n = 3. 

R 

R 

I 2 3 4 

1 2 

(a) (b) 

Fig. 3. Binary-tree representations of two distinct systems of poly- 
spherical coordinates in n = 4 dimensions: (a) generalized polar 
coordinates, (b) bispherical coordinates. 
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Instead we may split a radius R s imul taneously  
into m partial radii (with rn > 2) and represent this 
splitting by a point 1~ e S~_~ such that the m partial 
radii are RsC~, RsC2,..., R~:,,. This has the advantage 
of preserving a symmetry among the ~:'s which would 
be broken if  they were handled  through an explicit  
parametr izat ion of the splitting of hyperoctant  S+,,_~ 
in terms of polar  angles. This idea, introduced by 
Kamp6 de F6riet in the special case n = m + 2  [see 
Appell  & Kamp6 de F6riet (1926), p. 210], may be 
used recursively as was done above for m = 2. 

A graphical  representat ion by means of a tree is 
still possible (Fig. 5): a node v to which this procedure 
is appl ied has m successors v ('), v(=) , . . . ,  v (~), each 
partial radius R¢k belongs to a sphere S,,(~,~,)__~, and 
the conservation of d imens ion  at each node reads 

rn  

n(vCk')=n(v). 
k = l  

The total number  of angles required remains the same 
since 

( m - l ) +  ~ [n(v (k~) - l ]=n-1 .  
k = l  

As before, the zero-dimensional  phases associated 
with the end nodes may optional ly be represented by 
a suitable extension of the last splitting hyperoctant  
used. 

1 2 

Fig. 4. A polyspherical coordinate system in n--7 dimensions 
involving a polar radius R and six splitting angles tO t . . . .  , tO6. 

V 

( i ,  2: .~ 
V V ( V V'  : "  

Fig. 5. The basic building block of the tree representation of an 
n-dimensional zonal coordinate system consists of a node v, 
whose m successors u t~), v (2), . . . .  v ("~ are defined by means of 
a point ~ belonging to the positive unit hyperoctant S+,,_ ~ rather 
than by m -  1 splitting angles. 

A1.6. Integration over hyperspheres. The integra- 
tion of functions over So and $1 is very simple: 

f ( g x )  d S o = f ( - g ) + f ( + R )  (Al .10)  
S o  

2 r r  

~ f ( R x ) R  d S I = R  ~ f ( R  cosq~,Rsinq~)dq~ 
S i  0 

= R f ( R  cos 0XL) dSo 
0 

x[~!f(Rsin ~XR)dSol  dO. 

( A I . l l )  

From this starting point we may now define integra- 
tion on spheres in any polyspherical  coordinate sys- 
tem by induction,  with the help of the binary-tree 
representat ion of that system. Reading the tree back- 
wards from its end nodes, it suffices to specify an 
integral on S,(,~_~ in terms of integrals over S,c~,)_ ~ 
and S,(,~)_,.  At this point  the burden  of notat ion will 
be relieved by writing n, nt., nR for n( v), n( VL), n( VR); 
R for R(v) ;  x, XL and XR for x, ,  x , ,  and x,,, ; and 0 
for O(v). The desired relation may then be written 
compact ly  as 

I f ( R x )  R"-l  dS,,_, 
S .  _ ! 

?[ ] = R I f ( R  cos O×L)R "L-' dSm_ l 
S n l .  1 

Sn  R - I 

× c o s " ' - ' 0  sin"R-~O dO. (A1.12) 

In particular,  for a spherical  polar  coordinate system 
on S,_~ and f depending  only on the first splitting 
angle, say 0, we have n(VL)= 1 and hence: 

]" f ( R x )  dS,_~ = -O,,-iS f ( R ,  0) sin "-2 0 dO. 
S,, _ l 0 

(Al .13)  

For a splitting over S+,,_~ in a system of  zonal 
coordinates,  the corresponding induct ion formula  is 
easily derived. Abbreviat ing n(v  (k)) to n (k), we have: 

I f(Rx) R"-I dS._, 
S n  - I 

S m - t  k = 1 S. ( k )_  I 

,)  A114  
which obviously generalizes the previous one for 
m = 2 .  

In these two relations, integration is only over the 
totally positive hyperoctant ,  so that the integrations 
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over 0-dimensional phases must be performed, as 
in (AI.11). 

A2. Group actions and related notions 

The books by Burnside (1911), Carmichael (1937), 
Hall (1959), Scott (1964) and Dixon (1973) are recom- 
mended as reference works on group theory. 

A2.1. Action of  a group on a set. Let G be a group 
with identity element e and let X be a set. An action 
of G on X is a mapping from G × X  to X with the 
property that, if gx denotes the image of (g, x), then 

(i) (glg2)x = gm(g2x) for all gm, g2E G 
a n d a l l x ~  X (A2.1a) 

(ii) ex = x for all x e X. (A2.1 b) 

An element g of G thus induces a mapping Ts of X 
into itself defined by Ts(x) = gx, with the 'representa- 
tion property': 

(iii) Tglg2=-TgTg2 foral l  g l , g2~G.  (A2.1c) 

Since G is a group, every g has an inverse g-~; hence 
every mapping Tg has an inverse T,-, , so that each 
T, is a permutation of X. 

A2.2. Orbits and isotropy subgroups. Let x be a 
fixed element of the set X on which G acts. Two 
fundamental entities are associated with x: 

(1) the subset of G consisting of all g such that 
gx = x is a subgroup of G, called the isotropy subgroup 
of x and denoted Gx ; 

(2) the subset of X consisting of all elements gx 
with g running through G is called the orbit of x 
under G and is denoted Gx. 

Through these definitions, the action of G on X 
can be related to the internal structure of G, as fol- 
lows. Let G~ G~, denote the collection of distinct left 
cosets of G,, in G, i.e. of distinct subsets of G of the 
form gGx. Let ]GI, IGxl, IGxl and ]G/Gx] denote the 
numbers of elements in the corresponding sets. The 
number I G/Gxl of distinct cosets of Gx in G is also 
denoted [G : Gx] and is called the index of Gx in G; 
by Lagrange's theorem 

[G:G~]=IG/GxI=IGI / IGx l .  (A2.2) 

Now if ga and g2 are in the same coset of Gx, then 
g2=gmg ' with g 'eG, ,  and hence gmx=g2x; the 
converse is obviously true. Therefore, the mapping 
gG,, ~ gx from cosets to orbit elements establishes a 
one-to-one correspondence between the distinct left 
cosets of G,, in G and the elements of the orbit of x 
under G. It follows that the number of distinct ele- 
ments in the orbit of x is equal to the index of G~ in 
G: 

IGxI=[G:  Gx]=IGI/IGxl (A2.3) 

and that the elements of the orbit Gx of x may be 

listed without repetition by labelling them by the 
cosets of Gx in G: 

Ox = { yxl y ~ O / Gx }. (A2.4) 

A2.3. Fundamental domain and orbit decomposi- 
tion. The group properties of G imply that two orbits 
under G are either disjoint or equal. The set X may 
thus be written as the disjoint union 

X = [._.J Ox, (A2.5) 
i ~ l  

where the xi are elements of distinct orbits and I is 
an indexing set labelling them. The subset D = {xi}~ 
is said to constitute a fundamental domain (mathe- 
matical terminology) or an asymmetric unit (crys- 
tallographic terminology) for the action of G on X: 
it contains one representative x~ of each distinct orbit. 
Clearly, other fundamental domains may be obtained 
by choosing different representatives for these orbits. 

If X is finite and i f f  is an arbitrary complex-valued 
function over X, the 'integral' of f over X may be 
written as a sum of integrals over the distinct orbits, 
yielding the orbit decomposition formula: 

I f ( y , ) ]  (a2.6a)  

= E lox, l-'[ ~ f(g,x,)]. 
i~  I g l  G 

(A2.6b) 

(A2.6c) 

A2.4. Induced action on functions. For every action 
T s of G in X, there is an associated action Tg* of G 
on the linear space L ( X )  of complex-valued functions 
over X, defined by 'change of variable': 

[ T ~ f ] ( x ) = f [ ( T g ) - l x ] = f ( g - i x ) .  (A2.7) 

Indeed for any gl, g2 in G, 

{ T~,[ Tg~f]}(x)= [ TLf ] [ (  T,,)-'  x] 

=f[ T~)T~'x] 
= f[(  T,,T,2)-'x]; 

since T,, T,2 = Tg,g~, it follows that 

T # (A2.8) Tg ~,T*~ = g,g2" 

The linear representation operators T** on L ( X )  
provide the most natural instrument for stating and 
exploiting symmetry properties which a function may 
possess with respect to the action of G. Thus a func- 
tion f ~  L ( X )  will be called G-invariant if f ( g x ) =  
f ( x )  for all g ~ G and all x ~ X. The G-invariance of 
f may be written 

r ~ f  = f for all g ~ G. (A2.9) 
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A2.5. Crystallographic group action in real space. 
The action of a crystallographic group F with point 
group G on a crystal with period lattice A may be 
written in terms of fractional coordinates x in the unit 
cube [0, 1 ]  3 a s  

(g ,x) -~Sg(x)=Rgx+t~(modA)  (A2.10) 

with 

Sg,g2= Sg, Sg 2. (32.11) 

The notions of orbit, isotropy subgroup and funda- 
mental domain (or asymmetric unit) for the action 
of G o n  R3/7~3 are inherited directly from the general 
setting presented above. Points x for which Gx ~ {e} 
are called special positions and the various types of 
isotropy subgroups which may be encountered in 
crystallographic groups have been labelled by means 
of Wyckoff symbols. The representation operators S~ 
in L([O, 1] 3) have the form 

[S~ f ] ( x ) : f [S~] (x ) ]=f [Rg ' (X- tg ) ] .  (A2.12) 

The operators R g ~ associated with the purely rota- 
tional part of each transformation Sg will also be used. 

A2.6. Crystallographic group action in reciprocal 
space. The representation g ~  S~ of G given by its 
action on electron density distributions can be trans- 
posed by Fourier transformation into an action S* 
of G on L(Z3), i.e. on families of triply indexed 
Fourier coefficients' given by 

(S*F)(h)=exp(27rih. t~)F(Rrh)  (32.13) 

which is conjugate to the action Sg ~ in the sense that 

~[S~p]=S*~[p] ,  i .e.S*=~S~g~ ;. (32.14) 

The identity # Sg p = p expressing the G-invariance of 
p is then equivalent to the identity S*F = F between 
its structure factors, i.e. (Waser, 1955b) 

F(h)=exp(2rrih. tg)F(R~h).  (A2.15) 

If G is made to act on Z 3 via 

(g, h) -* (R[)-~h, (32.16) 

the usual notions of orbit, isotropy subgroup (denoted 
Gs) and fundamental domain may be attached to this 
action. However, the extra shift in (A2.15) introduces 
a more complex behaviour than mere invariance. 

A reflexion h is called special if Gs ~ {e}. Then for 
any g ~ Gh we have R grh = h and hence 

F(h)=exp(27rih. tg)F(h) (A2.17) 

implying that F(h) = 0 unless h . t g -=0  (mod 1). 
Special reflexions h for which h.  t~ ~ 0  (mod 1) for 
some g ~ Gh are thus systematically absent. 

A reflexion h is called centric if Gh = G ( - h ) ,  i.e. 
if the orbit o fh  contains -h .  Then R~rh = - h  for some 
coset 3' in G/Gh, so that the following relation must 

hold: 

[F(h)l exp (iCh) = exp (2 rrih. t ,  )l F ( -h ) [  exp (iq~-n). 

(A2.18) 

In the absence of dispersion, Friedel's law gives rise 
to the phase restriction: 

q~h = 0 h -  7rh. %(mod I7"). (A2.19) 

The value 0h of the restricted phase is easily shown 
to be independent of the choice ofcoset representative 
31. 

The full orbit of a reflexion h is defined as the 
set-theoretical union of the orbits of h and o f - h .  It 
is of particular relevance to powder diffraction and 
the number of its elements is the multiplicity factor of 
h, denoted here by Ph. If h is acentric, the orbits of 
h and of - h  are disjoint and hence 

Ph = 21Ghl (32.20a)  

while if h is centric these two orbits are the same and 

Ph ----- [Ghl. (A2.20b) 

A3. Structure-factor algebra and statistics 

The purpose of this section is to present a collection 
of algebraic identities between trigonometric struc- 
ture-factor expressions and to demonstrate their use 
in calculating the moments ofthese expressions under 
assumptions of random distribution of atomic posi- 
tions. The primary references for this material are 
Bertaut (1955, 1956a, b, 1959), Bertaut & Dulac 
(1956) and Bertaut & Waser (1957). The generaliz- 
ation of Bertaut's theory to non-uniform distributions 
of atoms, incorporating inter alia non-crystallo- 
graphic symmetry, is due to Bricogne (1988). 

A3.1. Bertaut's linearization formula. By the orbit 
decomposition formula (A2.6c), the contribution 
-~(h, x) of a point atom of unit scattering factor placed 
at x to the structure factor at h may be written 

_=(h, x) -- lGxl-~ Y ". exp[27rih.Sg(x)] .  (A3.1) 
g~G 

If we consider this quantity as a function o fx  indexed 
by h, the family of functions defined by --='h(X)= 
--W(h, x) constitutes an algebra in the sense that prod- 
ucts of such functions may be rewritten as linear 
combinations of other functions in that family, gen- 
eralizing well known trigonometric identities such as 
cos a cos b = ½[cos (a + b) + cos (a - b)]. This relation 
is given by Bertaut's linearization formula: 

~ (h ,  x) x ~ ( k ,  x) 

=[G,,[-~ ~ e x p ( 2 z r i k . t s ) ~ ( h + R ~ k , x  ) 
g~G 

(A3.2) 

[see § A2 of Bricogne (1988) for a proof]. 
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A3.2. Calculation of moments. Consider the posi- 
tion x of a generic atom as a random vector distributed 
in the asymmetric unit D of the crystal with proba- 
bility density q(x). The trigonometric structure-factor 
expressions --Wh(X) then become random variables 
with complex or real values and the calculation of 
their moments is fundamental to the statistical 
approach to the phase problem (Hauptman & Karle, 
1953; Bertaut, 1955; Klug, 1958). For our purposes, 
only moments of order 1 and 2 will be needed. 

Let Mh [or M(h)] denote the Fourier coefficient 
with indices h of the function obtained by symmetry 
expanding q(x)/lGxl to the whole unit cell and renor- 
malizing it. Then the first-order moment of --Wh is 

(--Wn) = IGIMh (A3.3) 

while the second-order moments can be obtained, by 
linearizing according to (A3.2), as 

(-=n-=~k) 

--IGI Y, exp(+27rik- tg)M(h+Rgrk)  • (A3.4) 
g c G  

At this point it becomes desirable to take into 
account the centric character of the reflexions. In the 
spirit of the conventions of § 1.0 and 1.1 [see also 
equation (A2.19)], define 

ah = Re --~h, fib = Im --Wh for h acentric (A3.5a) 

Yh = Re [exp (--i0h)--Wh] for h centric. (A3.5b) 

Elementary calculations according to a general pro- 
cedure described in §§ A1 and A2 of Bricogne (1988) 
then yields the following expressions for the second- 
order moments: 

(Othak)=½[ae(--~'h--~'+k)+ ae(--~'h...~_k)] (A3.6a) 

(anflk)=½[Im (_Wn_~+k)--Im (--~n--~_k)] (A3.6b) 

(/3nak)=½[lm (--Wh--W÷k)+Im (--Wn--='_k)] (A3.6c) 

(flnflk) = ½[ Re (~h~_k) -- Re (--~n--W÷k)] (A3.6d) 

(an Yk) = ½Re [ exp ( -  iOn)(--~h~+k) 

+exp (+ i0h)(~h--='_k)] (A3.7a) 

(fin Yk) = ½ lm [ exp ( -  iOn)(~hW--+k) 

+exp (+ i0h)(--='n~_k)] (A3.Tb) 

(Yh Yk) = ½Re {exp [ - i (  0n + 0k)](~h~+k) 

+exp[--i(Oh--Ok)](~n~-k)}. (A3.8) 

These formulae, considered together with (A3.3) 
and (A3.4), completely specify the elements of the 
vector of first moments and of the covariance matrix 
of the trigonometric structure-factor expressions 
under the assumption of an arbitrary distribution q(x) 
of random atoms. 

A3.3. Wilson statistics and statistical weight. Let us 
now assume that the distribution of random atoms 
in the asymmetric unit is uniform, so that Mo = 1 and 
Mn -- 0 for h # 0. The general moment expressions in 
§ A3.2 simplify to 

and that 

<~h> = </3n> = o 

(Ogh~k) : 0 for all h, k 

(anak) = (flhflk) = 0 for h # k 

( [  Olfh] 2) : ( [ ~ h ]  2) : ½1G~I IGI 

(A3.9a) 

(A3.9b) 

(A3.9c) 

(a3.9d)  

(yh)=0 (A3.10a) 

(YhYk) = 0 for h # k (A3.10b) 

([Yh]2)-½[IGhI+IGd]IGI--IGnl IGI. (A3.10c) 

Let An, Bn and Ch be as defined in § 1.0. For a 
crystal structure consisting of uniformly distributed 
random atoms away from special positions, it follows 
from (3.9a, b, c, d) that 

([Ah]2)=([Bh]2)=½lGnlcr2(h) (A3.11a) 

and from (3.10a, b, c) that 

([Cn]2) = IGdcr2(h) (A3.11b) 

with 

cr2(h)=lGI Y~ f (h)2= • f(h) 2 (A3.12) 
asymmetric unit unit cell , 

where the f ' s  are the scattering factors. Therefore, 
whether h is acentric or centric, we have 

(I Fnl2) = I GhI~.  (A3.13a) 

This expression may be compared to that used in 
the calculation of the normalized structure factors Eh 
from the ordinary structure factors Fn (assumed to 
have been placed on an absolute scale and corrected 
for thermal motion), which reads: 

(IF, l=) -- ~n,r=, (A3.13b) 

the quantity eh being called the statistical weight of 
reflexion h. It follows that 

e , - - IG  d. (A3.14) 

This relation was obtained by Stewart & Karle (1976) 
on the basis of a mostly verbal argument; the deriva- 
tions above give a formal proof of it (see also Iwasaki 
& lto, 1977; Stewart, Karle, Iwasaki & Ito, 1977). 

A4. Eulerian functions and related integrals 

Euler's gamma and beta functions are ubiquitous 
in classical analysis [Whittaker & Watson (1927), ch. 
12; Rainville (1960), ch. 1]. Their best known proper- 
ties are that they interpolate the factorial and the 
binomial coefficients respectively, but they occur in 
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the present work through their r61e in the calculation 
of integrals of monomials over hyperspheres. This 
section collects those properties of Eulerian functions 
and of their generalizations which are directly called 
upon in obtaining closed expressions for probability 
distributions in the main body of the paper. The best 
reference for this selection of material is chapter 8 of 
Schwartz (1965). 

A4.1. The g a m m a  function. The  gamma function 
has the well known integral representation 

Alternatively, 

oo 

/-'(z) = J e - ' t  z-I dt. (A4.1a) 
0 

oo 

F(z)  = 2  ~" e-t2t 2z-I dt. (34.1b) 
0 

The latter expression makes plain the relevance of F 
to the calculation of Gaussian integrals. Elementary 
derivations show that 

F ( z +  1) = z F ( z )  (A4.2a) 

F ( n + l ) = n !  for n _> 0. (A4.2b) 

A4.2. The beta integral. Products of F factors in 
the form (A4.1b) can be rearranged by going over to 
polar coordinates, giving rise to identities which play 
a fundamental r61e in the evaluation of many integrals 
in §§ 2 and 3. The simplest such instance occurs in 
the definition of the beta function: 

F ( p ) F ( q ) = 4  J e x p [ - ( u 2 + v 2 ) ] u 2 p - l v  2q-l d u d v  
0 0 

by (A4.1 b) 

oo ~ r / 2  

= 4  J j" e x p ( - r 2 ) r  2(p+q)-I 
0 0 

× Cos2P-10 sin 2q-l 0 dr  dO 

= 2 J exp ( - r 2 ) r  2(p÷q)-I dr  
0 

) x 2 cos2p-i 0sin  2q-! 0 d 0  . 
0 

Hence 

B(p ,  q ) =  r(p)r(q)/r(p+ q) 

~r /2  

= 2 j" C O S  2 p - 1  0 sin 2q-1 0 dO. 
0 

particular, for p = q = ½, In 

~ r / 2  

[f(½)]2= B(½, ½) = 2 J d0 = 7r, 
0 

(A4.3) 

hence 

/ - ' ( 1 )  = "rr 1 / 2  , (A4.4) 

giving by (A4.1b) the value of the Gauss integral: 

e -'2 d t = ~ F ( ~ ) = ~ T r  '/2. (34.5) 
0 

The functional equation (A4.2a) for F then yields 
the values of F for half-odd-integer arguments: 

F ( n + ½ ) = ( n + ½ ) ( n - ½ )  . . . ~F(~)' 1 

= [1 x3 x 5 x . . . x  ( 2 n -  1)/2"]7r 1/2 

= [ (2n)! /2 2" n !]Tr I/2. (A4.6) 

This identity is used in § A6.2 in the derivation of 
Poisson's integral. 

A4.3. General ized beta integrals. Application of the 
same procedure to n factors yields: 

OG 

2Pz- - !  du~, r(p,) = 2 j" exp ( -p~)u ,  
0 

i = l , . . . , n  by(A4.1a)  

r(p,) ...r(p,)= 2" ]. exp [ - (p~  + . . . +  p2,,)]u~P,-~ 
t_) n 

X X 1 1 2 p n - I  d u  du. 
. . . .  n 1 ' ' '  

= (  2"~exp(-r2)r2(p'+' ' '+p")-"r"-Idr)o 

by ui = r~, where O2 is the positive hyperoctant in 
R" and $2_1 is its intersection with the unit sphere 
S._, [see (A1.5) in § AI.1]. Hence the definition and 
integral representation of the generalized beta integral 
in n variables is 

B ( p l ,  . . . , p , )  = F ( p l )  . . . F ( p , ) /  r ( p l  +. . . + p , )  

=2"-1 j- (~p , - i . . .  ~2p-i dS. (A4.7) 
+ 

Sn - I  

The next two subsections describe two important 
consequences of this formula, which are used 
throughout §§ 2, 3 and 4. 

A4.4. Area o f  the unit sphere in R". Let .O~ denote 
the area of the unit sphere S,-I  in R". Putting Pl = P2 = 

1 . . .  = p ,  =~, 

B(½, . . . , ½) = [ F (  l12 ) ]" l  F ( n 1 2 )  = 2"- '  a , 1 2 "  = ~S2: 

and hence 

2,rr "/2 
n, -r(n/2)" (34.8) 
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The first few terms are O~ = 2, 02 = 2zr, 03 = 4~, 
• 1']4 = 2"n'2, ,Q5 = 871"2/5, ,(26 = ¢r3- Note the relation 

a, , /a , ,_ ,  =/- '[(n - 1 ) /2 ] r (½) / r (n /2 )  

= B [ ( n - 1 ) / 2 , ½ ]  

= S sin "-2 0 dO, (A4.9) 
0 

which has a simple geometric meaning in the context 
of integration [see (A1.13) in § A1.6]. 

A4.5. Moments o f  the unit spherical hyperoctant. 
Putting p~ = (a~ + 1)/2 in (A4.7) we get 

S s¢~ ' ' . . .  s¢:" dS 
+ 

Sn - I  

F[(a ,  + 1 ) / 2 ] . . .  F[(a,, + 1)/2] 

2"- ' / - ' [ (a ,  + . . . +  a,, + n)/2] 
(A4.10) 

This is a closed expression for the generic moments 
of the unit spherical hyperoctant. This result is funda- 
mental in the derivation of (2.8) in § 2.2, of (3.11) in 
§ 3.2 and of (4.7) in § 4.2. 

so that if any numerator parameter ai in (A5.1) is 
zero or a negative integer, the series terminates and 
gives rise to a polynomial. Either p or q, or both, may 
be zero; in that case, the absence of parameters is 
indicated by a dash. The simplest such series are: 

oFo( - ; - ;  z) = eZ; 

,Fo(a; - ;  z) = ( I - z ) - " ;  

o F , ( -  ; c; z) = F(c)z('-c)/2lc_,(2z'/2), 

I being a modified Bessel function; 

,F,(a;  c; z), 

the confluent hypergeometric function (Kummer's 
function); 

2F,(a, b; c; z), 

Gauss's hypergeometric function. 
By 'pushing along' the factors in the Pochhammer 

symbols according to the identity 

( a ) , + k = ( a ) , ( a + n ) k  (A5.3) 

A5. Hypergeometric series 

Most of the multidimensional integrals evaluated 
in this paper yield results which are best expressed, 
manipulated and computed as hypergeometric series. 
Classical identities involving these series are used in 
some of the derivations in §§ 2 and 3. The best general 
references are Rainville (1960), Lebedev (1972), 
Magnus, Oberhettinger & Soni (1966). 

A5.1. The general hypergeometric series pFq. 

pFq(a~, ~ 2 , . . . ,  ap; 3q, Y 2 , . . . ,  3'q; z) 

= ~  ~ (a,)k (Yj)k ( zk /k ! ) .  (A5.1) 
0 i , j = ,  

The numbers a~, a2, .  • •, ap, y, ,  Y2, . . - ,  Yq are called 
the parameters. The factorial function ( a ) , ,  also called 
Pochhammer's symbol, is defined by 

( a ) k = O t ( a + l ) ( o t + 2 ) . . . ( o t + k - 1 ) , k > - I  (A5.2a) 

(or) o = 1, a # 0. (A5.2b) 

and it is easily checked that 

( 1 ) t = k !  (A5.2c) 

( a ) k = F ( a + k ) / F ( a )  i f a  # 0 , - 1 , - 2 , . . . .  

(A5.2d) 

I f  n is a positive integer, 

( n ) k = ( n + k - - 1 ) ! / ( n - - 1 ) !  (A5.2e) 

( - n ) k = ( - 1 ) t n ! / ( n - k ) !  for k<_n, 
(AS.2f) 

= 0  for k > n  

one can easily obtain the following differentiation 
formulde: 

a n 

dz" p F q ( a , , . . . ,  ap; 3 q , . . . ,  3'q; z) 

3', + n , . . . ,  Yq + n; z). (A5.4) 

There also exist 2 p + q  linearly independent con- 
tiguous relations between pFq as written in (A5.1) and 
its contiguous functions, i.e. functions in which a 
single parameter has been incremented by +1, where 
the coefficients are polynomials at most linear in z 
[see Rainville (1960), pp. 80-85]. 

A useful recursive integral representation of pFq in 
terms of p-,Fq-i is given by the following identity 
[Rainville (1960), theorem 28, p. 85]: 

p F q ( a , , . . . ,  ap; 3 q , . . . ,  3'q; z) 

= [B(a , ,  y l -  a , ) ] - '  ~ t'~'-'(1 - t) ~'-~'- '  
0 

x p_,Fq_~(a2, . . . , ap; Y2, . . . , Yq; zt) dt, 

(AS.S) 

which is itself a special case of another relation 
[Rainville (1960), theorems 37 and 38, pp. 103-104]. 
This identity is used in deriving (2.6) in § 2.2, with 
p = q = 0 .  

Another important identity, special instances of 
which are proved in Rainville (1960, pp. 125, 201), 
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is based on the formal rearrangement of series: 

(,,~o v"/n!)[m~=O a ' ( - u v ) " / m ! ]  

= Z Z A k ( - 1 ) % k / k ! ( n - k ) !  v ~ 
n =0 k=0  

= F. ~ (--n)kAkUk/k! v"/n! by(A5.2f ) ,  
n =0 k=0  

from which it follows readily that 

e"pFq(al,. . . ,  a t ,; Y l , . . . ,  Yq; -uv) 
oo 

= Z p+,Fq(-n,  a , , . . . ,  ap; , / , , . . . ,  ~,~; u) v"/n! 
n=0  

(A5.6a) 

This identity is used in the form (3.10) in § 3.2 [see 
also (A5.13)]. 

A related identity [Magnus, Oberhettinger & Soni 
(1966), p. 63] is easily proved by termwise integration 
of the defining series: 

S v~'- le-VpFq(al ,  a 2 , . . .  , Ctp ; "Yl, 7 2 , . . . ,  Yq ; UV) dv 
0 

= r(a),+,Fq(a,, a2,.. . ,  ap, a; ~,, V2,..., "rq; u). 
(aS.6b) 

It is used in § 5.1.2 to derive the moments (5.8) of 
distribution (3.6a). 

A5.2. The hypergeometric series oF~. It is defined by 
oo 

oF~(- ;  y; z ) =  Y~ (y)k a zk/k! (A5.7a) 
k=O 

and is closely related to Bessel functions (see § A6.1). 
It plays a fundamental rSle in § 3.1. The differenti- 
ation identity (A5.4) reads 

d" 
dz, OFl(-; y;z)=(y)~loF~(-;  y+n;z )  (A5.7b) 

and is used to derive (4.4). 

A5.3. The hypergeometric series ~F~. Also called 
the confluent hypergeometric series (see Slater, 1960), 
it is defined by 

,F,(a; y; z)= ~ [(a)k/(y),] (zk/k!). 
k=O 

(A5.8a) 

The differentiation identity reads 

d" 
dz,~F~(a; y;z) [(a) , /(y) ,] lF~(a+n; y+n;z) .  

(AS.8b) 

There are three independent contiguous relations, 
namely 

(a  - y +  1)~Fl(a;  y; z) = a iF~(ot + 1; ,/; z ) -  ( T -  1) 

x ~F~(a; 3'- 1; z) (A5.9a) 

y (a  + z),F,(a; y; z)= ay,F,(a + 1; 3'; z)-(ot - y ) z  

x ~F~(a; 3,+ 1; z) (A5.9b) 

y,F,(a; y ; z ) = y , F , ( a - 1 ;  y ; z ) - z  

x ~F~(a; y+ 1; z). (A5.9c) 

The confluent hypergeometric function has the 
following integral representation: 

,F,(a; T; z)=[B(a, y -  a ) ] - '  
1 

x~t=-'(1-t)Y-a- 'eZ'dt  (A5.10) 
0 

which may be deduced from (A5.5) by recalling that 
the exponential is oFo. The change of variable t = 
1 -  s, or alternatively a recourse to identity (A5.6a), 
readily yields Kummer's  identity: 

,F,(a; y ; z )=e  z,F,(y-ot', 3,;-z), (A5.11) 

which is in constant use [see e.g. § 2.2, remark follow- 
ing (2.6); § 3.1, to obtain (3.7); § 3.2, to obtain (3.12b); 
§ 5.1.2, to obtain (5.8)]. 

A5.4. The associated Laguerre polynomials. They 
are defined by 

L~') (x)=[(a+l) , /n!] ,F, ( -n;  a+l ;x ) .  (A5.12) 

They are used in § 5.1.2 to calculate the moments of 
the non-central distributions (3.6). The polynomials 
for a = 0 are the simple Laguerre polynomials; those 
for a = +½ are related to the Hermite polynomials 
[Lebedev (1972), p. 81]. 

By virtue of (A5.6a) with p = 0 and q = 1, the L(, ~) 
have the following generating function: 

oo 

e~F,(-; a + l ; - x t ) =  Y. L(.~')(x)t"/(a+l). 
n=O 

(A5.13) 

[Rainville (1960), p. 201] which is used in § 3.2. 

A5.5. Hypergeometric series in several variables. 
There exists a natural extension of the hypergeometric 
series (5.1) to several variables, which was first 
described by Appell (1882) for the case of two vari- 
ables. It consists in examining the general term in the 
product of two functions of one variable, namely 

I1 (a,),,, (/3,,),, x" 
i=1 k = l  Y 

q f l  I) H (r~)m (a,). m! n. 
j = l  /=1 
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and in identifying those inequivalent ways of 
replacing products such as (ai),,,(flk), or (3'j),,,(6~), 
by (a~k),,+,, or (39),,+, respectively, so as to produce 
a genuine function of two variables x and y rather 
than (say) a function of (x +y ) .  In the two-variable 
case with p = r = 2 and q = s = 1 this produces four 
new functions. Many more possibilities exist for 
higher numbers of parameters and variables and the 
reader is referred to the books by Appell (1925) and 
Appell & Kamp~ de F6riet (1926) for further 
examples. 

In this work we need the following function in m 
variables: 

, , , F ] " ) ( a l , . . . ,  or,, ; 3'; z l , . . . ,  z,,,) 

_ - ~ .  . . . . .  ~ (~,),,...(~m)p z~' z~" 

p,=o p . .=o  (3 ' )p ,+ +p.~ Pl! P,,, ! 

(A5.14) 

(the notation is non-standard) which is most closely 
related to the Fo functions of Lauricella (1893). It is 
used in §§ 2.2 and 3.2 to calculate integrals of general 
multivariate Gaussians on hyperspheres. A straight- 
forward application of identities (A5.3) gives the 
differentiation formula: 

O S l  + .  . .-t-S m 
l ~ ( m )  

oz~,...oz~ ~ - ,  ( ~ , , . . . , ~ m ;  3";z,,...,z~) 

_- ( a , ) ~ l  . . . ( a m ) ~ .  m F ~ ) (  a ,  + s ,  , . . ., am + s ~  ", 
(3")~,+ +~ 
y + s~ + . . .  + s,,, ; z ~ , . . . ,  z,,,) (A5.15) 

which allows the maximization of log-likelihoods in 
the unequal-variance case (§ 5.1.2). 

A6. Modified Bessel functions of  general order 

A6.1. Expression in terms of  hypergeometric series. 
There exist two different representations of Iv(z) as 
hypergeometric series: 

l~(z)=[(~z)Vr(~+ 1)] oF , [ -  ; ~+ 1; (½z) 2] 

(A6.1a) 

=[(½z)~e-z/r(~+ 1)] ,F,(~+½; 2 v +  1; 2z) 

(A6.1b) 

[Abramowitz & Stegun (1965), p. 378; Rainville 
(1960), pp. 116, 126]. The representation in terms of 
oF~ is the most useful in this work. The representation 
in terms of ~F~ may be transformed by Kummer's  
identity (A5.11) to yield 

l , ( z )=[ (~z )"e~ /F(v+ 1)] ,F~(v+~; 2~,+ 1 ; - 2 z ) ,  

(A6.1c) 

a form which is used to obtain (3.7) in § 3.1 and is 
useful for obtaining asymptotic estimates. 

A6.2. The Poisson integral. The classical calcula- 
tion of this integral [Watson (1944), p. 24] may be 
cast in a slightly different form, better suited to the 
context of this paper, which uses evaluations of cir- 
cular moments by means of the beta function and 
expresses the final result as a oF~ hypergeometric 
series: 

S exp (z cos 0) sin 2~ 0 dO 
0 

~ r / 2  

= 2  J cosh (z cos 0) sin 2~ 0 dO 
0 

- 2 ~  z2P 2 
- cos 2p 0 sin 2~ 0 d 0 

p=0 (2p)! o 
oo 

by (A4.3) 

oo 

= y [ r ( p +  ~+ 1)] -1 [(½z)2,/p!] 
p = 0  

by (A4.6) 

= 1)]-' oF,[ - ;  1; (½z) 2] 
(A6.2) 

by (A5.2d) and (A5.7a). By means of (A6.1a) it can 
be written in the more usual form (3.5a). 

A6.3. Modified Bessel functions of  integer order. The 
oF~ hypergeometric series in expression (3.6) can be 
conveniently written in terms of modified Bessel func- 
tions of integer order when the number n of degrees 
of freedom is even. Only small orders are needed. 
For an arbitrary argument z, lo(z) and l~(z) can be 
calculated to eight decimal places of accuracy by 
means of polynomial approximations [Abramowitz 
& Stegun (1965), p. 378]. For small orders greater 
than 1, the forward recursion relations 

l ,+,(z)  = l , _ , ( z ) - ( 2 n / z ) I , ( z )  (A6.3) 

yield results of sufficient accuracy when z is not 
vanishingly small. In the latter case, the power-series 
expansion is an efficient method of computation. 

A6.4. Modified Bessel functions of  half-odd-integer 
order. When the number n of degrees of freedom is 
odd, the oF~ hypergeometric series in (3.6) can be 
written in terms of modified Bessel functions of half- 
odd-integer order, which can themselves be expressed 
in terms of elementary hyperbolic functions [see e.g. 
Abramowitz & Stegun (1965), p. 443]. The first two 
instances of interest here are 

l-ll2(Z) = (217rz) 112 cosh (z) 

l+ ll2( Z ) = ( 217rz ) I/2 sinh (z) 

( A 6 . 4 )  

(A6.5) 
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which are invoked in relating (3.6a) to (3.6c) and 
(4.4) to classical single-crystal results. The next few 
orders can be obtained to sufficient accuracy by using 
the forward recursion relations 

ln+3/2(Z) = l n _ l / 2 ( Z ) - - [ ( 2 n +  l ) / z ]  ln+l/2(z)  ( A 6 . 6 )  

provided z is not vanishingly small. 
The first few functions are 

I3/2(z) = (2/' trz)l/2[cosh ( z ) + s i n h  ( z ) / z ]  (A6.7) 

15/2(Z) = (2/7rz)I/2[ (3 /z  2 + 1 ) sinh (z) 

- (3 /z )  cash (z)]. (A6.8) 
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